| Step | Hyp | Ref
| Expression |
| 1 | | 1re 10039 |
. . . 4
⊢ 1 ∈
ℝ |
| 2 | 1 | rexri 10097 |
. . 3
⊢ 1 ∈
ℝ* |
| 3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → 1 ∈
ℝ*) |
| 4 | | pnfxr 10092 |
. . 3
⊢ +∞
∈ ℝ* |
| 5 | 4 | a1i 11 |
. 2
⊢ (𝜑 → +∞ ∈
ℝ*) |
| 6 | | fprodge1.ph |
. . 3
⊢
Ⅎ𝑘𝜑 |
| 7 | | icossre 12254 |
. . . . . 6
⊢ ((1
∈ ℝ ∧ +∞ ∈ ℝ*) → (1[,)+∞)
⊆ ℝ) |
| 8 | 1, 4, 7 | mp2an 708 |
. . . . 5
⊢
(1[,)+∞) ⊆ ℝ |
| 9 | | ax-resscn 9993 |
. . . . 5
⊢ ℝ
⊆ ℂ |
| 10 | 8, 9 | sstri 3612 |
. . . 4
⊢
(1[,)+∞) ⊆ ℂ |
| 11 | 10 | a1i 11 |
. . 3
⊢ (𝜑 → (1[,)+∞) ⊆
ℂ) |
| 12 | 2 | a1i 11 |
. . . . 5
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ 1 ∈ ℝ*) |
| 13 | 4 | a1i 11 |
. . . . 5
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ +∞ ∈ ℝ*) |
| 14 | 8 | sseli 3599 |
. . . . . . . 8
⊢ (𝑥 ∈ (1[,)+∞) →
𝑥 ∈
ℝ) |
| 15 | 14 | adantr 481 |
. . . . . . 7
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ 𝑥 ∈
ℝ) |
| 16 | 8 | sseli 3599 |
. . . . . . . 8
⊢ (𝑦 ∈ (1[,)+∞) →
𝑦 ∈
ℝ) |
| 17 | 16 | adantl 482 |
. . . . . . 7
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ 𝑦 ∈
ℝ) |
| 18 | 15, 17 | remulcld 10070 |
. . . . . 6
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ (𝑥 · 𝑦) ∈
ℝ) |
| 19 | 18 | rexrd 10089 |
. . . . 5
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ (𝑥 · 𝑦) ∈
ℝ*) |
| 20 | | 1t1e1 11175 |
. . . . . . . 8
⊢ (1
· 1) = 1 |
| 21 | 20 | eqcomi 2631 |
. . . . . . 7
⊢ 1 = (1
· 1) |
| 22 | 21 | a1i 11 |
. . . . . 6
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ 1 = (1 · 1)) |
| 23 | 1 | a1i 11 |
. . . . . . 7
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ 1 ∈ ℝ) |
| 24 | | 0le1 10551 |
. . . . . . . 8
⊢ 0 ≤
1 |
| 25 | 24 | a1i 11 |
. . . . . . 7
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ 0 ≤ 1) |
| 26 | 2 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1[,)+∞) → 1
∈ ℝ*) |
| 27 | 4 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1[,)+∞) →
+∞ ∈ ℝ*) |
| 28 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1[,)+∞) →
𝑥 ∈
(1[,)+∞)) |
| 29 | | icogelb 12225 |
. . . . . . . . 9
⊢ ((1
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
𝑥 ∈ (1[,)+∞))
→ 1 ≤ 𝑥) |
| 30 | 26, 27, 28, 29 | syl3anc 1326 |
. . . . . . . 8
⊢ (𝑥 ∈ (1[,)+∞) → 1
≤ 𝑥) |
| 31 | 30 | adantr 481 |
. . . . . . 7
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ 1 ≤ 𝑥) |
| 32 | 2 | a1i 11 |
. . . . . . . . 9
⊢ (𝑦 ∈ (1[,)+∞) → 1
∈ ℝ*) |
| 33 | 4 | a1i 11 |
. . . . . . . . 9
⊢ (𝑦 ∈ (1[,)+∞) →
+∞ ∈ ℝ*) |
| 34 | | id 22 |
. . . . . . . . 9
⊢ (𝑦 ∈ (1[,)+∞) →
𝑦 ∈
(1[,)+∞)) |
| 35 | | icogelb 12225 |
. . . . . . . . 9
⊢ ((1
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
𝑦 ∈ (1[,)+∞))
→ 1 ≤ 𝑦) |
| 36 | 32, 33, 34, 35 | syl3anc 1326 |
. . . . . . . 8
⊢ (𝑦 ∈ (1[,)+∞) → 1
≤ 𝑦) |
| 37 | 36 | adantl 482 |
. . . . . . 7
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ 1 ≤ 𝑦) |
| 38 | 23, 15, 23, 17, 25, 25, 31, 37 | lemul12ad 10966 |
. . . . . 6
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ (1 · 1) ≤ (𝑥 · 𝑦)) |
| 39 | 22, 38 | eqbrtrd 4675 |
. . . . 5
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ 1 ≤ (𝑥 ·
𝑦)) |
| 40 | 18 | ltpnfd 11955 |
. . . . 5
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ (𝑥 · 𝑦) <
+∞) |
| 41 | 12, 13, 19, 39, 40 | elicod 12224 |
. . . 4
⊢ ((𝑥 ∈ (1[,)+∞) ∧
𝑦 ∈ (1[,)+∞))
→ (𝑥 · 𝑦) ∈
(1[,)+∞)) |
| 42 | 41 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞))) →
(𝑥 · 𝑦) ∈
(1[,)+∞)) |
| 43 | | fprodge1.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 44 | 2 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ∈
ℝ*) |
| 45 | 4 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → +∞ ∈
ℝ*) |
| 46 | | fprodge1.b |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 47 | 46 | rexrd 10089 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈
ℝ*) |
| 48 | | fprodge1.ge |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) |
| 49 | 46 | ltpnfd 11955 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 < +∞) |
| 50 | 44, 45, 47, 48, 49 | elicod 12224 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (1[,)+∞)) |
| 51 | | 1le1 10655 |
. . . . . 6
⊢ 1 ≤
1 |
| 52 | | ltpnf 11954 |
. . . . . . 7
⊢ (1 ∈
ℝ → 1 < +∞) |
| 53 | 1, 52 | ax-mp 5 |
. . . . . 6
⊢ 1 <
+∞ |
| 54 | 1, 51, 53 | 3pm3.2i 1239 |
. . . . 5
⊢ (1 ∈
ℝ ∧ 1 ≤ 1 ∧ 1 < +∞) |
| 55 | | elico2 12237 |
. . . . . 6
⊢ ((1
∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈
(1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 <
+∞))) |
| 56 | 1, 4, 55 | mp2an 708 |
. . . . 5
⊢ (1 ∈
(1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 <
+∞)) |
| 57 | 54, 56 | mpbir 221 |
. . . 4
⊢ 1 ∈
(1[,)+∞) |
| 58 | 57 | a1i 11 |
. . 3
⊢ (𝜑 → 1 ∈
(1[,)+∞)) |
| 59 | 6, 11, 42, 43, 50, 58 | fprodcllemf 14688 |
. 2
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ (1[,)+∞)) |
| 60 | | icogelb 12225 |
. 2
⊢ ((1
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
∏𝑘 ∈ 𝐴 𝐵 ∈ (1[,)+∞)) → 1 ≤
∏𝑘 ∈ 𝐴 𝐵) |
| 61 | 3, 5, 59, 60 | syl3anc 1326 |
1
⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |