Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbllem2 Structured version   Visualization version   GIF version

Theorem hoiqssbllem2 40837
Description: The center of the n-dimensional ball belongs to the half-open interval. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbllem2.i 𝑖𝜑
hoiqssbllem2.x (𝜑𝑋 ∈ Fin)
hoiqssbllem2.n (𝜑𝑋 ≠ ∅)
hoiqssbllem2.y (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))
hoiqssbllem2.c (𝜑𝐶:𝑋⟶ℝ)
hoiqssbllem2.d (𝜑𝐷:𝑋⟶ℝ)
hoiqssbllem2.e (𝜑𝐸 ∈ ℝ+)
hoiqssbllem2.l ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
hoiqssbllem2.r ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
Assertion
Ref Expression
hoiqssbllem2 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
Distinct variable groups:   𝐶,𝑖   𝐷,𝑖   𝑖,𝐸   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖

Proof of Theorem hoiqssbllem2
Dummy variables 𝑓 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoiqssbllem2.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
2 eqid 2622 . . . . . . . . . 10 (ℝ^‘𝑋) = (ℝ^‘𝑋)
3 eqid 2622 . . . . . . . . . 10 (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 𝑋)
42, 3rrxdsfi 40505 . . . . . . . . 9 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) = (𝑔 ∈ (ℝ ↑𝑚 𝑋), ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2))))
51, 4syl 17 . . . . . . . 8 (𝜑 → (dist‘(ℝ^‘𝑋)) = (𝑔 ∈ (ℝ ↑𝑚 𝑋), ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2))))
65adantr 481 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (dist‘(ℝ^‘𝑋)) = (𝑔 ∈ (ℝ ↑𝑚 𝑋), ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2))))
7 fveq1 6190 . . . . . . . . . . . . 13 (𝑔 = 𝑌 → (𝑔𝑖) = (𝑌𝑖))
87adantr 481 . . . . . . . . . . . 12 ((𝑔 = 𝑌 = 𝑓) → (𝑔𝑖) = (𝑌𝑖))
9 fveq1 6190 . . . . . . . . . . . . 13 ( = 𝑓 → (𝑖) = (𝑓𝑖))
109adantl 482 . . . . . . . . . . . 12 ((𝑔 = 𝑌 = 𝑓) → (𝑖) = (𝑓𝑖))
118, 10oveq12d 6668 . . . . . . . . . . 11 ((𝑔 = 𝑌 = 𝑓) → ((𝑔𝑖) − (𝑖)) = ((𝑌𝑖) − (𝑓𝑖)))
1211oveq1d 6665 . . . . . . . . . 10 ((𝑔 = 𝑌 = 𝑓) → (((𝑔𝑖) − (𝑖))↑2) = (((𝑌𝑖) − (𝑓𝑖))↑2))
1312sumeq2ad 14434 . . . . . . . . 9 ((𝑔 = 𝑌 = 𝑓) → Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2) = Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2))
1413fveq2d 6195 . . . . . . . 8 ((𝑔 = 𝑌 = 𝑓) → (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2)) = (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)))
1514adantl 482 . . . . . . 7 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ (𝑔 = 𝑌 = 𝑓)) → (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2)) = (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)))
16 hoiqssbllem2.y . . . . . . . 8 (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))
1716adantr 481 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑌 ∈ (ℝ ↑𝑚 𝑋))
18 hoiqssbllem2.i . . . . . . . . . 10 𝑖𝜑
19 hoiqssbllem2.c . . . . . . . . . . 11 (𝜑𝐶:𝑋⟶ℝ)
2019ffvelrnda 6359 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℝ)
21 hoiqssbllem2.d . . . . . . . . . . . 12 (𝜑𝐷:𝑋⟶ℝ)
2221ffvelrnda 6359 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℝ)
2322rexrd 10089 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℝ*)
2418, 20, 23hoissrrn2 40792 . . . . . . . . 9 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (ℝ ↑𝑚 𝑋))
2524adantr 481 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (ℝ ↑𝑚 𝑋))
26 simpr 477 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
2725, 26sseldd 3604 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓 ∈ (ℝ ↑𝑚 𝑋))
28 fvexd 6203 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) ∈ V)
296, 15, 17, 27, 28ovmpt2d 6788 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) = (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)))
30 nfcv 2764 . . . . . . . . . 10 𝑖𝑓
31 nfixp1 7928 . . . . . . . . . 10 𝑖X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))
3230, 31nfel 2777 . . . . . . . . 9 𝑖 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))
3318, 32nfan 1828 . . . . . . . 8 𝑖(𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
34 simpl 473 . . . . . . . . 9 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝜑)
3534, 1syl 17 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑋 ∈ Fin)
36 elmapi 7879 . . . . . . . . . . . . 13 (𝑌 ∈ (ℝ ↑𝑚 𝑋) → 𝑌:𝑋⟶ℝ)
3716, 36syl 17 . . . . . . . . . . . 12 (𝜑𝑌:𝑋⟶ℝ)
3837ffvelrnda 6359 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
3934, 38sylan 488 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
40 icossre 12254 . . . . . . . . . . . . 13 (((𝐶𝑖) ∈ ℝ ∧ (𝐷𝑖) ∈ ℝ*) → ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ ℝ)
4120, 23, 40syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ ℝ)
4241adantlr 751 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ ℝ)
43 fvixp2 39389 . . . . . . . . . . . 12 ((𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
4443adantll 750 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
4542, 44sseldd 3604 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
4639, 45resubcld 10458 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝑌𝑖) − (𝑓𝑖)) ∈ ℝ)
47 2nn0 11309 . . . . . . . . . 10 2 ∈ ℕ0
4847a1i 11 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → 2 ∈ ℕ0)
4946, 48reexpcld 13025 . . . . . . . 8 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) ∈ ℝ)
5033, 35, 49fsumreclf 39808 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) ∈ ℝ)
51 fveq2 6191 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
52 fveq2 6191 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝐷𝑖) = (𝐷𝑗))
5351, 52oveq12d 6668 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝐶𝑖)[,)(𝐷𝑖)) = ((𝐶𝑗)[,)(𝐷𝑗)))
5453cbvixpv 7926 . . . . . . . . . . 11 X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) = X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))
5554eleq2i 2693 . . . . . . . . . 10 (𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ↔ 𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)))
5655biimpi 206 . . . . . . . . 9 (𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) → 𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)))
5756adantl 482 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)))
581adantr 481 . . . . . . . . 9 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑋 ∈ Fin)
59 simpll 790 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 𝜑)
6055biimpri 218 . . . . . . . . . . 11 (𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)) → 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
6160ad2antlr 763 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
62 simpr 477 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 𝑖𝑋)
6359, 61, 62, 49syl21anc 1325 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) ∈ ℝ)
6446sqge0d 13036 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → 0 ≤ (((𝑌𝑖) − (𝑓𝑖))↑2))
6559, 61, 62, 64syl21anc 1325 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 0 ≤ (((𝑌𝑖) − (𝑓𝑖))↑2))
6658, 63, 65fsumge0 14527 . . . . . . . 8 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → 0 ≤ Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2))
6734, 57, 66syl2anc 693 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 0 ≤ Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2))
6850, 67resqrtcld 14156 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) ∈ ℝ)
6929, 68eqeltrd 2701 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) ∈ ℝ)
7022, 20resubcld 10458 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) ∈ ℝ)
7170resqcld 13035 . . . . . . . 8 ((𝜑𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
721, 71fsumrecl 14465 . . . . . . 7 (𝜑 → Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
7370sqge0d 13036 . . . . . . . 8 ((𝜑𝑖𝑋) → 0 ≤ (((𝐷𝑖) − (𝐶𝑖))↑2))
741, 71, 73fsumge0 14527 . . . . . . 7 (𝜑 → 0 ≤ Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
7572, 74resqrtcld 14156 . . . . . 6 (𝜑 → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) ∈ ℝ)
7675adantr 481 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) ∈ ℝ)
77 hoiqssbllem2.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
7877rpred 11872 . . . . . 6 (𝜑𝐸 ∈ ℝ)
7978adantr 481 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝐸 ∈ ℝ)
80 hoiqssbllem2.n . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
8180adantr 481 . . . . . . . . 9 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑋 ≠ ∅)
8271adantlr 751 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
8334, 22sylan 488 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝐷𝑖) ∈ ℝ)
8434, 20sylan 488 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝐶𝑖) ∈ ℝ)
8583, 84resubcld 10458 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) ∈ ℝ)
8620rexrd 10089 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℝ*)
8738rexrd 10089 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ*)
88 2rp 11837 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ+
8988a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 2 ∈ ℝ+)
90 hashnncl 13157 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑋 ∈ Fin → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
911, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
9280, 91mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (#‘𝑋) ∈ ℕ)
9392nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (#‘𝑋) ∈ ℝ)
9492nngt0d 11064 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 0 < (#‘𝑋))
9593, 94elrpd 11869 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (#‘𝑋) ∈ ℝ+)
9695rpsqrtcld 14150 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (√‘(#‘𝑋)) ∈ ℝ+)
9789, 96rpmulcld 11888 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (2 · (√‘(#‘𝑋))) ∈ ℝ+)
9877, 97rpdivcld 11889 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸 / (2 · (√‘(#‘𝑋)))) ∈ ℝ+)
9998rpred 11872 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 / (2 · (√‘(#‘𝑋)))) ∈ ℝ)
10099adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(#‘𝑋)))) ∈ ℝ)
10138, 100resubcld 10458 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ)
102101rexrd 10089 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ*)
103 hoiqssbllem2.l . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
104 iooltub 39735 . . . . . . . . . . . . . . . . 17 ((((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ* ∧ (𝑌𝑖) ∈ ℝ* ∧ (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) → (𝐶𝑖) < (𝑌𝑖))
105102, 87, 103, 104syl3anc 1326 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → (𝐶𝑖) < (𝑌𝑖))
10620, 38, 105ltled 10185 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝐶𝑖) ≤ (𝑌𝑖))
10738, 100readdcld 10069 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ)
108107rexrd 10089 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ*)
109 hoiqssbllem2.r . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
110 ioogtlb 39717 . . . . . . . . . . . . . . . 16 (((𝑌𝑖) ∈ ℝ* ∧ ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ* ∧ (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) → (𝑌𝑖) < (𝐷𝑖))
11187, 108, 109, 110syl3anc 1326 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝑌𝑖) < (𝐷𝑖))
11286, 23, 87, 106, 111elicod 12224 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
11334, 112sylan 488 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
114 icodiamlt 14174 . . . . . . . . . . . . 13 ((((𝐶𝑖) ∈ ℝ ∧ (𝐷𝑖) ∈ ℝ) ∧ ((𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)) ∧ (𝑓𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))) → (abs‘((𝑌𝑖) − (𝑓𝑖))) < ((𝐷𝑖) − (𝐶𝑖)))
11584, 83, 113, 44, 114syl22anc 1327 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (abs‘((𝑌𝑖) − (𝑓𝑖))) < ((𝐷𝑖) − (𝐶𝑖)))
116 0red 10041 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → 0 ∈ ℝ)
11720, 38, 22, 106, 111lelttrd 10195 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → (𝐶𝑖) < (𝐷𝑖))
11820, 22posdifd 10614 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → ((𝐶𝑖) < (𝐷𝑖) ↔ 0 < ((𝐷𝑖) − (𝐶𝑖))))
119117, 118mpbid 222 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → 0 < ((𝐷𝑖) − (𝐶𝑖)))
120116, 70, 119ltled 10185 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 0 ≤ ((𝐷𝑖) − (𝐶𝑖)))
12170, 120absidd 14161 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (abs‘((𝐷𝑖) − (𝐶𝑖))) = ((𝐷𝑖) − (𝐶𝑖)))
122121eqcomd 2628 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) = (abs‘((𝐷𝑖) − (𝐶𝑖))))
123122adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) = (abs‘((𝐷𝑖) − (𝐶𝑖))))
124115, 123breqtrd 4679 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (abs‘((𝑌𝑖) − (𝑓𝑖))) < (abs‘((𝐷𝑖) − (𝐶𝑖))))
12546, 85, 124abslt2sqd 39576 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) < (((𝐷𝑖) − (𝐶𝑖))↑2))
12659, 61, 62, 125syl21anc 1325 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) < (((𝐷𝑖) − (𝐶𝑖))↑2))
12758, 81, 63, 82, 126fsumlt 14532 . . . . . . . 8 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) < Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
12834, 57, 127syl2anc 693 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) < Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
12934, 72syl 17 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
13034, 74syl 17 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 0 ≤ Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
13150, 67, 129, 130sqrtltd 14166 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) < Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) ↔ (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) < (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))))
132128, 131mpbid 222 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) < (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)))
13329, 132eqbrtrd 4675 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) < (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)))
13478, 96rerpdivcld 11903 . . . . . . . . . . 11 (𝜑 → (𝐸 / (√‘(#‘𝑋))) ∈ ℝ)
135134resqcld 13035 . . . . . . . . . 10 (𝜑 → ((𝐸 / (√‘(#‘𝑋)))↑2) ∈ ℝ)
136135adantr 481 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((𝐸 / (√‘(#‘𝑋)))↑2) ∈ ℝ)
13722, 20jca 554 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐷𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ))
138107, 101jca 554 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ))
139137, 138jca 554 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (((𝐷𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ)))
140 iooltub 39735 . . . . . . . . . . . . . 14 (((𝑌𝑖) ∈ ℝ* ∧ ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ* ∧ (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) → (𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))
14187, 108, 109, 140syl3anc 1326 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))
142 ioogtlb 39717 . . . . . . . . . . . . . 14 ((((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ* ∧ (𝑌𝑖) ∈ ℝ* ∧ (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) < (𝐶𝑖))
143102, 87, 103, 142syl3anc 1326 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) < (𝐶𝑖))
144141, 143jca 554 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) < (𝐶𝑖)))
145 lt2sub 10526 . . . . . . . . . . . 12 ((((𝐷𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ)) → (((𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) < (𝐶𝑖)) → ((𝐷𝑖) − (𝐶𝑖)) < (((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))))))
146139, 144, 145sylc 65 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) < (((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))))
14738recnd 10068 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℂ)
148100recnd 10068 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(#‘𝑋)))) ∈ ℂ)
149147, 148, 148pnncand 10431 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))) = ((𝐸 / (2 · (√‘(#‘𝑋)))) + (𝐸 / (2 · (√‘(#‘𝑋))))))
15078recnd 10068 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ ℂ)
15196rpcnd 11874 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(#‘𝑋)) ∈ ℂ)
152 2cnd 11093 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
15396rpne0d 11877 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(#‘𝑋)) ≠ 0)
15489rpne0d 11877 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≠ 0)
155150, 151, 152, 153, 154divdiv3d 39575 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸 / (√‘(#‘𝑋))) / 2) = (𝐸 / (2 · (√‘(#‘𝑋)))))
156155eqcomd 2628 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸 / (2 · (√‘(#‘𝑋)))) = ((𝐸 / (√‘(#‘𝑋))) / 2))
157156, 156oveq12d 6668 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸 / (2 · (√‘(#‘𝑋)))) + (𝐸 / (2 · (√‘(#‘𝑋))))) = (((𝐸 / (√‘(#‘𝑋))) / 2) + ((𝐸 / (√‘(#‘𝑋))) / 2)))
158150, 151, 153divcld 10801 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸 / (√‘(#‘𝑋))) ∈ ℂ)
1591582halvesd 11278 . . . . . . . . . . . . . 14 (𝜑 → (((𝐸 / (√‘(#‘𝑋))) / 2) + ((𝐸 / (√‘(#‘𝑋))) / 2)) = (𝐸 / (√‘(#‘𝑋))))
160157, 159eqtrd 2656 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / (2 · (√‘(#‘𝑋)))) + (𝐸 / (2 · (√‘(#‘𝑋))))) = (𝐸 / (√‘(#‘𝑋))))
161160adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐸 / (2 · (√‘(#‘𝑋)))) + (𝐸 / (2 · (√‘(#‘𝑋))))) = (𝐸 / (√‘(#‘𝑋))))
162149, 161eqtrd 2656 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))) = (𝐸 / (√‘(#‘𝑋))))
163146, 162breqtrd 4679 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) < (𝐸 / (√‘(#‘𝑋))))
164134adantr 481 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐸 / (√‘(#‘𝑋))) ∈ ℝ)
165 0red 10041 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
16696rpred 11872 . . . . . . . . . . . . . 14 (𝜑 → (√‘(#‘𝑋)) ∈ ℝ)
16777rpgt0d 11875 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐸)
16896rpgt0d 11875 . . . . . . . . . . . . . 14 (𝜑 → 0 < (√‘(#‘𝑋)))
16978, 166, 167, 168divgt0d 10959 . . . . . . . . . . . . 13 (𝜑 → 0 < (𝐸 / (√‘(#‘𝑋))))
170165, 134, 169ltled 10185 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐸 / (√‘(#‘𝑋))))
171170adantr 481 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → 0 ≤ (𝐸 / (√‘(#‘𝑋))))
172 lt2sq 12937 . . . . . . . . . . 11 (((((𝐷𝑖) − (𝐶𝑖)) ∈ ℝ ∧ 0 ≤ ((𝐷𝑖) − (𝐶𝑖))) ∧ ((𝐸 / (√‘(#‘𝑋))) ∈ ℝ ∧ 0 ≤ (𝐸 / (√‘(#‘𝑋))))) → (((𝐷𝑖) − (𝐶𝑖)) < (𝐸 / (√‘(#‘𝑋))) ↔ (((𝐷𝑖) − (𝐶𝑖))↑2) < ((𝐸 / (√‘(#‘𝑋)))↑2)))
17370, 120, 164, 171, 172syl22anc 1327 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖)) < (𝐸 / (√‘(#‘𝑋))) ↔ (((𝐷𝑖) − (𝐶𝑖))↑2) < ((𝐸 / (√‘(#‘𝑋)))↑2)))
174163, 173mpbid 222 . . . . . . . . 9 ((𝜑𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖))↑2) < ((𝐸 / (√‘(#‘𝑋)))↑2))
1751, 80, 71, 136, 174fsumlt 14532 . . . . . . . 8 (𝜑 → Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) < Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2))
1761, 136fsumrecl 14465 . . . . . . . . 9 (𝜑 → Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2) ∈ ℝ)
177164sqge0d 13036 . . . . . . . . . 10 ((𝜑𝑖𝑋) → 0 ≤ ((𝐸 / (√‘(#‘𝑋)))↑2))
1781, 136, 177fsumge0 14527 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2))
17972, 74, 176, 178sqrtltd 14166 . . . . . . . 8 (𝜑 → (Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) < Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2) ↔ (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < (√‘Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2))))
180175, 179mpbid 222 . . . . . . 7 (𝜑 → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < (√‘Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2)))
181135recnd 10068 . . . . . . . . . . 11 (𝜑 → ((𝐸 / (√‘(#‘𝑋)))↑2) ∈ ℂ)
182 fsumconst 14522 . . . . . . . . . . 11 ((𝑋 ∈ Fin ∧ ((𝐸 / (√‘(#‘𝑋)))↑2) ∈ ℂ) → Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2) = ((#‘𝑋) · ((𝐸 / (√‘(#‘𝑋)))↑2)))
1831, 181, 182syl2anc 693 . . . . . . . . . 10 (𝜑 → Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2) = ((#‘𝑋) · ((𝐸 / (√‘(#‘𝑋)))↑2)))
184 sqdiv 12928 . . . . . . . . . . . . 13 ((𝐸 ∈ ℂ ∧ (√‘(#‘𝑋)) ∈ ℂ ∧ (√‘(#‘𝑋)) ≠ 0) → ((𝐸 / (√‘(#‘𝑋)))↑2) = ((𝐸↑2) / ((√‘(#‘𝑋))↑2)))
185150, 151, 153, 184syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → ((𝐸 / (√‘(#‘𝑋)))↑2) = ((𝐸↑2) / ((√‘(#‘𝑋))↑2)))
18693recnd 10068 . . . . . . . . . . . . . 14 (𝜑 → (#‘𝑋) ∈ ℂ)
187 sqrtth 14104 . . . . . . . . . . . . . 14 ((#‘𝑋) ∈ ℂ → ((√‘(#‘𝑋))↑2) = (#‘𝑋))
188186, 187syl 17 . . . . . . . . . . . . 13 (𝜑 → ((√‘(#‘𝑋))↑2) = (#‘𝑋))
189188oveq2d 6666 . . . . . . . . . . . 12 (𝜑 → ((𝐸↑2) / ((√‘(#‘𝑋))↑2)) = ((𝐸↑2) / (#‘𝑋)))
190185, 189eqtrd 2656 . . . . . . . . . . 11 (𝜑 → ((𝐸 / (√‘(#‘𝑋)))↑2) = ((𝐸↑2) / (#‘𝑋)))
191190oveq2d 6666 . . . . . . . . . 10 (𝜑 → ((#‘𝑋) · ((𝐸 / (√‘(#‘𝑋)))↑2)) = ((#‘𝑋) · ((𝐸↑2) / (#‘𝑋))))
192150sqcld 13006 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℂ)
193165, 94gtned 10172 . . . . . . . . . . 11 (𝜑 → (#‘𝑋) ≠ 0)
194192, 186, 193divcan2d 10803 . . . . . . . . . 10 (𝜑 → ((#‘𝑋) · ((𝐸↑2) / (#‘𝑋))) = (𝐸↑2))
195183, 191, 1943eqtrd 2660 . . . . . . . . 9 (𝜑 → Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2) = (𝐸↑2))
196195fveq2d 6195 . . . . . . . 8 (𝜑 → (√‘Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2)) = (√‘(𝐸↑2)))
197165, 78, 167ltled 10185 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐸)
198 sqrtsq 14010 . . . . . . . . 9 ((𝐸 ∈ ℝ ∧ 0 ≤ 𝐸) → (√‘(𝐸↑2)) = 𝐸)
19978, 197, 198syl2anc 693 . . . . . . . 8 (𝜑 → (√‘(𝐸↑2)) = 𝐸)
200 eqidd 2623 . . . . . . . 8 (𝜑𝐸 = 𝐸)
201196, 199, 2003eqtrd 2660 . . . . . . 7 (𝜑 → (√‘Σ𝑖𝑋 ((𝐸 / (√‘(#‘𝑋)))↑2)) = 𝐸)
202180, 201breqtrd 4679 . . . . . 6 (𝜑 → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < 𝐸)
203202adantr 481 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < 𝐸)
20469, 76, 79, 133, 203lttrd 10198 . . . 4 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) < 𝐸)
205 eqid 2622 . . . . . . . 8 (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋))
206205rrxmetfi 40507 . . . . . . 7 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑𝑚 𝑋)))
207 metxmet 22139 . . . . . . 7 ((dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑𝑚 𝑋)) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
2081, 206, 2073syl 18 . . . . . 6 (𝜑 → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
209208adantr 481 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
21079rexrd 10089 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝐸 ∈ ℝ*)
21127, 3syl6eleq 2711 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓 ∈ (ℝ ↑𝑚 𝑋))
212 elbl2 22195 . . . . 5 ((((dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)) ∧ 𝐸 ∈ ℝ*) ∧ (𝑌 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋))) → (𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ (𝑌(dist‘(ℝ^‘𝑋))𝑓) < 𝐸))
213209, 210, 17, 211, 212syl22anc 1327 . . . 4 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ (𝑌(dist‘(ℝ^‘𝑋))𝑓) < 𝐸))
214204, 213mpbird 247 . . 3 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
215214ralrimiva 2966 . 2 (𝜑 → ∀𝑓X 𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
216 dfss3 3592 . 2 (X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ ∀𝑓X 𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
217215, 216sylibr 224 1 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wnf 1708  wcel 1990  wne 2794  wral 2912  Vcvv 3200  wss 3574  c0 3915   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  Xcixp 7908  Fincfn 7955  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  +crp 11832  (,)cioo 12175  [,)cico 12177  cexp 12860  #chash 13117  csqrt 13973  abscabs 13974  Σcsu 14416  distcds 15950  ∞Metcxmt 19731  Metcme 19732  ballcbl 19733  ℝ^crrx 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-cnfld 19747  df-refld 19951  df-dsmm 20076  df-frlm 20091  df-nm 22387  df-tng 22389  df-tch 22969  df-rrx 23173
This theorem is referenced by:  hoiqssbllem3  40838
  Copyright terms: Public domain W3C validator