MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanord1 Structured version   Visualization version   GIF version

Theorem tanord1 24283
Description: The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord 24284.) (Contributed by Mario Carneiro, 29-Jul-2014.) Revised to replace an OLD theorem. (Revised by Wolf Lammen, 20-Sep-2020.)
Assertion
Ref Expression
tanord1 ((𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))

Proof of Theorem tanord1
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1487 . 2
2 fveq2 6191 . . 3 (𝑥 = 𝑦 → (tan‘𝑥) = (tan‘𝑦))
3 fveq2 6191 . . 3 (𝑥 = 𝐴 → (tan‘𝑥) = (tan‘𝐴))
4 fveq2 6191 . . 3 (𝑥 = 𝐵 → (tan‘𝑥) = (tan‘𝐵))
5 0re 10040 . . . 4 0 ∈ ℝ
6 halfpire 24216 . . . . 5 (π / 2) ∈ ℝ
76rexri 10097 . . . 4 (π / 2) ∈ ℝ*
8 icossre 12254 . . . 4 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (0[,)(π / 2)) ⊆ ℝ)
95, 7, 8mp2an 708 . . 3 (0[,)(π / 2)) ⊆ ℝ
109sseli 3599 . . . . 5 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ ℝ)
11 neghalfpirx 24218 . . . . . . . . 9 -(π / 2) ∈ ℝ*
12 pire 24210 . . . . . . . . . . 11 π ∈ ℝ
13 2re 11090 . . . . . . . . . . 11 2 ∈ ℝ
14 pipos 24212 . . . . . . . . . . 11 0 < π
15 2pos 11112 . . . . . . . . . . 11 0 < 2
1612, 13, 14, 15divgt0ii 10941 . . . . . . . . . 10 0 < (π / 2)
17 lt0neg2 10535 . . . . . . . . . . 11 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
186, 17ax-mp 5 . . . . . . . . . 10 (0 < (π / 2) ↔ -(π / 2) < 0)
1916, 18mpbi 220 . . . . . . . . 9 -(π / 2) < 0
20 df-ioo 12179 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
21 df-ico 12181 . . . . . . . . . 10 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
22 xrltletr 11988 . . . . . . . . . 10 ((-(π / 2) ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-(π / 2) < 0 ∧ 0 ≤ 𝑤) → -(π / 2) < 𝑤))
2320, 21, 22ixxss1 12193 . . . . . . . . 9 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) < 0) → (0[,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
2411, 19, 23mp2an 708 . . . . . . . 8 (0[,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
2524sseli 3599 . . . . . . 7 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
26 cosq14gt0 24262 . . . . . . 7 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝑥))
2725, 26syl 17 . . . . . 6 (𝑥 ∈ (0[,)(π / 2)) → 0 < (cos‘𝑥))
2827gt0ne0d 10592 . . . . 5 (𝑥 ∈ (0[,)(π / 2)) → (cos‘𝑥) ≠ 0)
2910, 28retancld 14875 . . . 4 (𝑥 ∈ (0[,)(π / 2)) → (tan‘𝑥) ∈ ℝ)
3029adantl 482 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,)(π / 2))) → (tan‘𝑥) ∈ ℝ)
3110resincld 14873 . . . . . . . . 9 (𝑥 ∈ (0[,)(π / 2)) → (sin‘𝑥) ∈ ℝ)
3210recoscld 14874 . . . . . . . . 9 (𝑥 ∈ (0[,)(π / 2)) → (cos‘𝑥) ∈ ℝ)
3331, 32, 28redivcld 10853 . . . . . . . 8 (𝑥 ∈ (0[,)(π / 2)) → ((sin‘𝑥) / (cos‘𝑥)) ∈ ℝ)
34333ad2ant1 1082 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) ∈ ℝ)
359sseli 3599 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ ℝ)
36353ad2ant2 1083 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
3736resincld 14873 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑦) ∈ ℝ)
38323ad2ant1 1082 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑥) ∈ ℝ)
39283ad2ant1 1082 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑥) ≠ 0)
4037, 38, 39redivcld 10853 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑥)) ∈ ℝ)
4136recoscld 14874 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) ∈ ℝ)
4224sseli 3599 . . . . . . . . . . 11 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
43 cosq14gt0 24262 . . . . . . . . . . 11 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝑦))
4442, 43syl 17 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 0 < (cos‘𝑦))
4544gt0ne0d 10592 . . . . . . . . 9 (𝑦 ∈ (0[,)(π / 2)) → (cos‘𝑦) ≠ 0)
46453ad2ant2 1083 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) ≠ 0)
4737, 41, 46redivcld 10853 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑦)) ∈ ℝ)
48 ioossicc 12259 . . . . . . . . . . . 12 (-(π / 2)(,)(π / 2)) ⊆ (-(π / 2)[,](π / 2))
4924, 48sstri 3612 . . . . . . . . . . 11 (0[,)(π / 2)) ⊆ (-(π / 2)[,](π / 2))
5049sseli 3599 . . . . . . . . . 10 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (-(π / 2)[,](π / 2)))
5149sseli 3599 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (-(π / 2)[,](π / 2)))
52 sinord 24280 . . . . . . . . . 10 ((𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (-(π / 2)[,](π / 2))) → (𝑥 < 𝑦 ↔ (sin‘𝑥) < (sin‘𝑦)))
5350, 51, 52syl2an 494 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 ↔ (sin‘𝑥) < (sin‘𝑦)))
5453biimp3a 1432 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑥) < (sin‘𝑦))
55103ad2ant1 1082 . . . . . . . . . 10 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
5655resincld 14873 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑥) ∈ ℝ)
57273ad2ant1 1082 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (cos‘𝑥))
58 ltdiv1 10887 . . . . . . . . 9 (((sin‘𝑥) ∈ ℝ ∧ (sin‘𝑦) ∈ ℝ ∧ ((cos‘𝑥) ∈ ℝ ∧ 0 < (cos‘𝑥))) → ((sin‘𝑥) < (sin‘𝑦) ↔ ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥))))
5956, 37, 38, 57, 58syl112anc 1330 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) < (sin‘𝑦) ↔ ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥))))
6054, 59mpbid 222 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥)))
6112rexri 10097 . . . . . . . . . . . 12 π ∈ ℝ*
62 pirp 24213 . . . . . . . . . . . . 13 π ∈ ℝ+
63 rphalflt 11860 . . . . . . . . . . . . 13 (π ∈ ℝ+ → (π / 2) < π)
6462, 63ax-mp 5 . . . . . . . . . . . 12 (π / 2) < π
65 df-icc 12182 . . . . . . . . . . . . 13 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
66 xrlttr 11973 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → ((𝑤 < (π / 2) ∧ (π / 2) < π) → 𝑤 < π))
67 xrltle 11982 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π))
68673adant2 1080 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π))
6966, 68syld 47 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → ((𝑤 < (π / 2) ∧ (π / 2) < π) → 𝑤 ≤ π))
7065, 21, 69ixxss2 12194 . . . . . . . . . . . 12 ((π ∈ ℝ* ∧ (π / 2) < π) → (0[,)(π / 2)) ⊆ (0[,]π))
7161, 64, 70mp2an 708 . . . . . . . . . . 11 (0[,)(π / 2)) ⊆ (0[,]π)
7271sseli 3599 . . . . . . . . . 10 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (0[,]π))
7371sseli 3599 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (0[,]π))
74 cosord 24278 . . . . . . . . . 10 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (𝑥 < 𝑦 ↔ (cos‘𝑦) < (cos‘𝑥)))
7572, 73, 74syl2an 494 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 ↔ (cos‘𝑦) < (cos‘𝑥)))
7675biimp3a 1432 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) < (cos‘𝑥))
77 0red 10041 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 ∈ ℝ)
78 simp1 1061 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (0[,)(π / 2)))
79 elico2 12237 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2))))
805, 7, 79mp2an 708 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2)))
8178, 80sylib 208 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2)))
8281simp2d 1074 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 ≤ 𝑥)
83 simp3 1063 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
8477, 55, 36, 82, 83lelttrd 10195 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < 𝑦)
85 simp2 1062 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (0[,)(π / 2)))
86 elico2 12237 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2))))
875, 7, 86mp2an 708 . . . . . . . . . . . . . 14 (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2)))
8885, 87sylib 208 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2)))
8988simp3d 1075 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 < (π / 2))
90 0xr 10086 . . . . . . . . . . . . 13 0 ∈ ℝ*
91 elioo2 12216 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2))))
9290, 7, 91mp2an 708 . . . . . . . . . . . 12 (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2)))
9336, 84, 89, 92syl3anbrc 1246 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (0(,)(π / 2)))
94 sincosq1sgn 24250 . . . . . . . . . . 11 (𝑦 ∈ (0(,)(π / 2)) → (0 < (sin‘𝑦) ∧ 0 < (cos‘𝑦)))
9593, 94syl 17 . . . . . . . . . 10 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (0 < (sin‘𝑦) ∧ 0 < (cos‘𝑦)))
9695simprd 479 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (cos‘𝑦))
9795simpld 475 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (sin‘𝑦))
98 ltdiv2 10909 . . . . . . . . 9 ((((cos‘𝑦) ∈ ℝ ∧ 0 < (cos‘𝑦)) ∧ ((cos‘𝑥) ∈ ℝ ∧ 0 < (cos‘𝑥)) ∧ ((sin‘𝑦) ∈ ℝ ∧ 0 < (sin‘𝑦))) → ((cos‘𝑦) < (cos‘𝑥) ↔ ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦))))
9941, 96, 38, 57, 37, 97, 98syl222anc 1342 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((cos‘𝑦) < (cos‘𝑥) ↔ ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦))))
10076, 99mpbid 222 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦)))
10134, 40, 47, 60, 100lttrd 10198 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦)))
10210recnd 10068 . . . . . . . 8 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ ℂ)
103 tanval 14858 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (cos‘𝑥) ≠ 0) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
104102, 28, 103syl2anc 693 . . . . . . 7 (𝑥 ∈ (0[,)(π / 2)) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
1051043ad2ant1 1082 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
10635recnd 10068 . . . . . . . 8 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ ℂ)
1071063ad2ant2 1083 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℂ)
108 tanval 14858 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (cos‘𝑦) ≠ 0) → (tan‘𝑦) = ((sin‘𝑦) / (cos‘𝑦)))
109107, 46, 108syl2anc 693 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑦) = ((sin‘𝑦) / (cos‘𝑦)))
110101, 105, 1093brtr4d 4685 . . . . 5 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑥) < (tan‘𝑦))
1111103expia 1267 . . . 4 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
112111adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
1132, 3, 4, 9, 30, 112ltord1 10554 . 2 ((⊤ ∧ (𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2)))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
1141, 113mpan 706 1 ((𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wtru 1484  wcel 1990  wne 2794  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  *cxr 10073   < clt 10074  cle 10075  -cneg 10267   / cdiv 10684  2c2 11070  +crp 11832  (,)cioo 12175  [,)cico 12177  [,]cicc 12178  sincsin 14794  cosccos 14795  tanctan 14796  πcpi 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  tanord  24284
  Copyright terms: Public domain W3C validator