| Step | Hyp | Ref
| Expression |
| 1 | | dvfsum.s |
. . . . . . 7
⊢ 𝑆 = (𝑇(,)+∞) |
| 2 | | ioossre 12235 |
. . . . . . 7
⊢ (𝑇(,)+∞) ⊆
ℝ |
| 3 | 1, 2 | eqsstri 3635 |
. . . . . 6
⊢ 𝑆 ⊆
ℝ |
| 4 | | dvfsumrlim2.1 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| 5 | 3, 4 | sseldi 3601 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 6 | 5 | rexrd 10089 |
. . . 4
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
| 7 | 5 | renepnfd 10090 |
. . . 4
⊢ (𝜑 → 𝑋 ≠ +∞) |
| 8 | | icopnfsup 12664 |
. . . 4
⊢ ((𝑋 ∈ ℝ*
∧ 𝑋 ≠ +∞)
→ sup((𝑋[,)+∞),
ℝ*, < ) = +∞) |
| 9 | 6, 7, 8 | syl2anc 693 |
. . 3
⊢ (𝜑 → sup((𝑋[,)+∞), ℝ*, < ) =
+∞) |
| 10 | 9 | adantr 481 |
. 2
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → sup((𝑋[,)+∞), ℝ*, < ) =
+∞) |
| 11 | | dvfsum.z |
. . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 12 | | dvfsum.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 13 | | dvfsum.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 14 | | dvfsum.md |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) |
| 15 | | dvfsum.t |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 16 | | dvfsum.a |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
| 17 | | dvfsum.b1 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
| 18 | | dvfsum.b2 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| 19 | | dvfsum.b3 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
| 20 | | dvfsum.c |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) |
| 21 | | dvfsumrlim.g |
. . . . . . . 8
⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) |
| 22 | 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | dvfsumrlimf 23788 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝑆⟶ℝ) |
| 23 | 22 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝐺:𝑆⟶ℝ) |
| 24 | 4 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋 ∈ 𝑆) |
| 25 | 23, 24 | ffvelrnd 6360 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺‘𝑋) ∈ ℝ) |
| 26 | 25 | recnd 10068 |
. . . 4
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺‘𝑋) ∈ ℂ) |
| 27 | 15 | rexrd 10089 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈
ℝ*) |
| 28 | 4, 1 | syl6eleq 2711 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ (𝑇(,)+∞)) |
| 29 | | elioopnf 12267 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ ℝ*
→ (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))) |
| 30 | 27, 29 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))) |
| 31 | 28, 30 | mpbid 222 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)) |
| 32 | 31 | simprd 479 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 < 𝑋) |
| 33 | | df-ioo 12179 |
. . . . . . . . . . 11
⊢ (,) =
(𝑢 ∈
ℝ*, 𝑣
∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤 ∧ 𝑤 < 𝑣)}) |
| 34 | | df-ico 12181 |
. . . . . . . . . . 11
⊢ [,) =
(𝑢 ∈
ℝ*, 𝑣
∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣)}) |
| 35 | | xrltletr 11988 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ ℝ*
∧ 𝑋 ∈
ℝ* ∧ 𝑧
∈ ℝ*) → ((𝑇 < 𝑋 ∧ 𝑋 ≤ 𝑧) → 𝑇 < 𝑧)) |
| 36 | 33, 34, 35 | ixxss1 12193 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ ℝ*
∧ 𝑇 < 𝑋) → (𝑋[,)+∞) ⊆ (𝑇(,)+∞)) |
| 37 | 27, 32, 36 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋[,)+∞) ⊆ (𝑇(,)+∞)) |
| 38 | 37, 1 | syl6sseqr 3652 |
. . . . . . . 8
⊢ (𝜑 → (𝑋[,)+∞) ⊆ 𝑆) |
| 39 | 38 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑋[,)+∞) ⊆ 𝑆) |
| 40 | 39 | sselda 3603 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ 𝑆) |
| 41 | 23, 40 | ffvelrnd 6360 |
. . . . 5
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺‘𝑦) ∈ ℝ) |
| 42 | 41 | recnd 10068 |
. . . 4
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺‘𝑦) ∈ ℂ) |
| 43 | 26, 42 | subcld 10392 |
. . 3
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → ((𝐺‘𝑋) − (𝐺‘𝑦)) ∈ ℂ) |
| 44 | | pnfxr 10092 |
. . . . . . 7
⊢ +∞
∈ ℝ* |
| 45 | | icossre 12254 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ +∞
∈ ℝ*) → (𝑋[,)+∞) ⊆
ℝ) |
| 46 | 5, 44, 45 | sylancl 694 |
. . . . . 6
⊢ (𝜑 → (𝑋[,)+∞) ⊆
ℝ) |
| 47 | 46 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑋[,)+∞) ⊆
ℝ) |
| 48 | | rlimf 14232 |
. . . . . . . 8
⊢ (𝐺 ⇝𝑟
𝐿 → 𝐺:dom 𝐺⟶ℂ) |
| 49 | 48 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → 𝐺:dom 𝐺⟶ℂ) |
| 50 | | ovex 6678 |
. . . . . . . . 9
⊢
(Σ𝑘 ∈
(𝑀...(⌊‘𝑥))𝐶 − 𝐴) ∈ V |
| 51 | 50, 21 | dmmpti 6023 |
. . . . . . . 8
⊢ dom 𝐺 = 𝑆 |
| 52 | 51 | feq2i 6037 |
. . . . . . 7
⊢ (𝐺:dom 𝐺⟶ℂ ↔ 𝐺:𝑆⟶ℂ) |
| 53 | 49, 52 | sylib 208 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → 𝐺:𝑆⟶ℂ) |
| 54 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → 𝑋 ∈ 𝑆) |
| 55 | 53, 54 | ffvelrnd 6360 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝐺‘𝑋) ∈ ℂ) |
| 56 | | rlimconst 14275 |
. . . . 5
⊢ (((𝑋[,)+∞) ⊆ ℝ
∧ (𝐺‘𝑋) ∈ ℂ) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺‘𝑋)) ⇝𝑟 (𝐺‘𝑋)) |
| 57 | 47, 55, 56 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺‘𝑋)) ⇝𝑟 (𝐺‘𝑋)) |
| 58 | 53 | feqmptd 6249 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → 𝐺 = (𝑦 ∈ 𝑆 ↦ (𝐺‘𝑦))) |
| 59 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → 𝐺 ⇝𝑟 𝐿) |
| 60 | 58, 59 | eqbrtrrd 4677 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑦 ∈ 𝑆 ↦ (𝐺‘𝑦)) ⇝𝑟 𝐿) |
| 61 | 39, 60 | rlimres2 14292 |
. . . 4
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺‘𝑦)) ⇝𝑟 𝐿) |
| 62 | 26, 42, 57, 61 | rlimsub 14374 |
. . 3
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ ((𝐺‘𝑋) − (𝐺‘𝑦))) ⇝𝑟 ((𝐺‘𝑋) − 𝐿)) |
| 63 | 43, 62 | rlimabs 14339 |
. 2
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (abs‘((𝐺‘𝑋) − (𝐺‘𝑦)))) ⇝𝑟
(abs‘((𝐺‘𝑋) − 𝐿))) |
| 64 | 3 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ ℝ) |
| 65 | 64, 16, 17, 19 | dvmptrecl 23787 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℝ) |
| 66 | 65 | ralrimiva 2966 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐵 ∈ ℝ) |
| 67 | | nfcsb1v 3549 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑋 / 𝑥⦌𝐵 |
| 68 | 67 | nfel1 2779 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑋 / 𝑥⦌𝐵 ∈ ℝ |
| 69 | | csbeq1a 3542 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → 𝐵 = ⦋𝑋 / 𝑥⦌𝐵) |
| 70 | 69 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝐵 ∈ ℝ ↔ ⦋𝑋 / 𝑥⦌𝐵 ∈ ℝ)) |
| 71 | 68, 70 | rspc 3303 |
. . . . . 6
⊢ (𝑋 ∈ 𝑆 → (∀𝑥 ∈ 𝑆 𝐵 ∈ ℝ → ⦋𝑋 / 𝑥⦌𝐵 ∈ ℝ)) |
| 72 | 4, 66, 71 | sylc 65 |
. . . . 5
⊢ (𝜑 → ⦋𝑋 / 𝑥⦌𝐵 ∈ ℝ) |
| 73 | 72 | recnd 10068 |
. . . 4
⊢ (𝜑 → ⦋𝑋 / 𝑥⦌𝐵 ∈ ℂ) |
| 74 | | rlimconst 14275 |
. . . 4
⊢ (((𝑋[,)+∞) ⊆ ℝ
∧ ⦋𝑋 /
𝑥⦌𝐵 ∈ ℂ) → (𝑦 ∈ (𝑋[,)+∞) ↦ ⦋𝑋 / 𝑥⦌𝐵) ⇝𝑟
⦋𝑋 / 𝑥⦌𝐵) |
| 75 | 46, 73, 74 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝑦 ∈ (𝑋[,)+∞) ↦ ⦋𝑋 / 𝑥⦌𝐵) ⇝𝑟
⦋𝑋 / 𝑥⦌𝐵) |
| 76 | 75 | adantr 481 |
. 2
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ ⦋𝑋 / 𝑥⦌𝐵) ⇝𝑟
⦋𝑋 / 𝑥⦌𝐵) |
| 77 | 43 | abscld 14175 |
. 2
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺‘𝑋) − (𝐺‘𝑦))) ∈ ℝ) |
| 78 | 72 | ad2antrr 762 |
. 2
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → ⦋𝑋 / 𝑥⦌𝐵 ∈ ℝ) |
| 79 | 26, 42 | abssubd 14192 |
. . 3
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺‘𝑋) − (𝐺‘𝑦))) = (abs‘((𝐺‘𝑦) − (𝐺‘𝑋)))) |
| 80 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑀 ∈ ℤ) |
| 81 | 13 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝐷 ∈ ℝ) |
| 82 | 14 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑀 ≤ (𝐷 + 1)) |
| 83 | 15 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑇 ∈ ℝ) |
| 84 | 16 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
| 85 | 17 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
| 86 | 18 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| 87 | 19 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
| 88 | 44 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → +∞ ∈
ℝ*) |
| 89 | | 3simpa 1058 |
. . . . . . 7
⊢ ((𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞) → (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) |
| 90 | | dvfsumrlim.l |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) |
| 91 | 89, 90 | syl3an3 1361 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞)) → 𝐶 ≤ 𝐵) |
| 92 | 91 | 3adant1r 1319 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞)) → 𝐶 ≤ 𝐵) |
| 93 | | dvfsumrlim.k |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟
0) |
| 94 | 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 90, 21, 93 | dvfsumrlimge0 23793 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 0 ≤ 𝐵) |
| 95 | 94 | 3adantr3 1222 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ +∞)) → 0 ≤ 𝐵) |
| 96 | 95 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ +∞)) → 0 ≤ 𝐵) |
| 97 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋 ∈ 𝑆) |
| 98 | 38 | sselda 3603 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ 𝑆) |
| 99 | | dvfsumrlim2.2 |
. . . . . 6
⊢ (𝜑 → 𝐷 ≤ 𝑋) |
| 100 | 99 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝐷 ≤ 𝑋) |
| 101 | | elicopnf 12269 |
. . . . . . 7
⊢ (𝑋 ∈ ℝ → (𝑦 ∈ (𝑋[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑋 ≤ 𝑦))) |
| 102 | 5, 101 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ (𝑋[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑋 ≤ 𝑦))) |
| 103 | 102 | simplbda 654 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋 ≤ 𝑦) |
| 104 | 102 | simprbda 653 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ ℝ) |
| 105 | 104 | rexrd 10089 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ ℝ*) |
| 106 | | pnfge 11964 |
. . . . . 6
⊢ (𝑦 ∈ ℝ*
→ 𝑦 ≤
+∞) |
| 107 | 105, 106 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ≤ +∞) |
| 108 | 1, 11, 80, 81, 82, 83, 84, 85, 86, 87, 20, 88, 92, 21, 96, 97, 98, 100, 103, 107 | dvfsumlem4 23792 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺‘𝑦) − (𝐺‘𝑋))) ≤ ⦋𝑋 / 𝑥⦌𝐵) |
| 109 | 108 | adantlr 751 |
. . 3
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺‘𝑦) − (𝐺‘𝑋))) ≤ ⦋𝑋 / 𝑥⦌𝐵) |
| 110 | 79, 109 | eqbrtrd 4675 |
. 2
⊢ (((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺‘𝑋) − (𝐺‘𝑦))) ≤ ⦋𝑋 / 𝑥⦌𝐵) |
| 111 | 10, 63, 76, 77, 78, 110 | rlimle 14378 |
1
⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ ⦋𝑋 / 𝑥⦌𝐵) |