| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem46.h |
. . . . . . . . 9
⊢ 𝐻 = ({-π, π, 𝐶} ∪ ((-π[,]π) ∖
dom 𝐹)) |
| 2 | | pire 24210 |
. . . . . . . . . . . . 13
⊢ π
∈ ℝ |
| 3 | 2 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → π ∈
ℝ) |
| 4 | 3 | renegcld 10457 |
. . . . . . . . . . 11
⊢ (𝜑 → -π ∈
ℝ) |
| 5 | | fourierdlem46.c |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 6 | | tpssi 4369 |
. . . . . . . . . . 11
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ ∧ 𝐶 ∈ ℝ) → {-π, π, 𝐶} ⊆
ℝ) |
| 7 | 4, 3, 5, 6 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → {-π, π, 𝐶} ⊆
ℝ) |
| 8 | 4, 3 | iccssred 39727 |
. . . . . . . . . . 11
⊢ (𝜑 → (-π[,]π) ⊆
ℝ) |
| 9 | 8 | ssdifssd 3748 |
. . . . . . . . . 10
⊢ (𝜑 → ((-π[,]π) ∖
dom 𝐹) ⊆
ℝ) |
| 10 | 7, 9 | unssd 3789 |
. . . . . . . . 9
⊢ (𝜑 → ({-π, π, 𝐶} ∪ ((-π[,]π) ∖
dom 𝐹)) ⊆
ℝ) |
| 11 | 1, 10 | syl5eqss 3649 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 ⊆ ℝ) |
| 12 | | fourierdlem46.qf |
. . . . . . . . 9
⊢ (𝜑 → 𝑄:(0...𝑀)⟶𝐻) |
| 13 | | fourierdlem46.i |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
| 14 | | elfzofz 12485 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀)) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
| 16 | 12, 15 | ffvelrnd 6360 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘𝐼) ∈ 𝐻) |
| 17 | 11, 16 | sseldd 3604 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝐼) ∈ ℝ) |
| 18 | 17 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) ∈ ℝ) |
| 19 | | fzofzp1 12565 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) |
| 20 | 13, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
| 21 | 12, 20 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ 𝐻) |
| 22 | 11, 21 | sseldd 3604 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 23 | 22 | rexrd 10089 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 24 | 23 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 25 | | fourierdlem46.10 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝐼) < (𝑄‘(𝐼 + 1))) |
| 26 | 25 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) < (𝑄‘(𝐼 + 1))) |
| 27 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝑄‘𝐼) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘𝐼)) → 𝑥 = (𝑄‘𝐼)) |
| 28 | | simpl 473 |
. . . . . . . . . . . . 13
⊢ (((𝑄‘𝐼) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) ∈ dom 𝐹) |
| 29 | 27, 28 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ (((𝑄‘𝐼) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
| 30 | 29 | adantll 750 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) ∧ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
| 31 | 30 | adantlr 751 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
| 32 | | ssun2 3777 |
. . . . . . . . . . . . . . . . . . 19
⊢
((-π[,]π) ∖ dom 𝐹) ⊆ ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹)) |
| 33 | 32, 1 | sseqtr4i 3638 |
. . . . . . . . . . . . . . . . . 18
⊢
((-π[,]π) ∖ dom 𝐹) ⊆ 𝐻 |
| 34 | | fourierdlem46.qiss |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆
(-π(,)π)) |
| 35 | | ioossicc 12259 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(-π(,)π) ⊆ (-π[,]π) |
| 36 | 34, 35 | syl6ss 3615 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆
(-π[,]π)) |
| 37 | 36 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ (-π[,]π)) |
| 38 | 37 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π)) |
| 39 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹) |
| 40 | 38, 39 | eldifd 3585 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((-π[,]π) ∖ dom 𝐹)) |
| 41 | 33, 40 | sseldi 3601 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ 𝐻) |
| 42 | | fourierdlem46.ranq |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ran 𝑄 = 𝐻) |
| 43 | 42 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐻 = ran 𝑄) |
| 44 | 43 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝐻 = ran 𝑄) |
| 45 | 41, 44 | eleqtrd 2703 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ran 𝑄) |
| 46 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ran 𝑄) |
| 47 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑄:(0...𝑀)⟶𝐻 → 𝑄 Fn (0...𝑀)) |
| 48 | 12, 47 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑄 Fn (0...𝑀)) |
| 49 | 48 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝑄) → 𝑄 Fn (0...𝑀)) |
| 50 | | fvelrnb 6243 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑄 Fn (0...𝑀) → (𝑥 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥)) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝑄) → (𝑥 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥)) |
| 52 | 46, 51 | mpbid 222 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥) |
| 53 | 52 | adantlr 751 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥) |
| 54 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ) |
| 55 | 54 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → 𝑗 ∈ ℤ) |
| 56 | | simplll 798 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → 𝜑) |
| 57 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → 𝑗 ∈ (0...𝑀)) |
| 58 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄‘𝑗) = 𝑥) → (𝑄‘𝑗) = 𝑥) |
| 59 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄‘𝑗) = 𝑥) → 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 60 | 58, 59 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄‘𝑗) = 𝑥) → (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 61 | 60 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 62 | | elfzoelz 12470 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ ℤ) |
| 63 | 13, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐼 ∈ ℤ) |
| 64 | 63 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 ∈ ℤ) |
| 65 | 17 | rexrd 10089 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑄‘𝐼) ∈
ℝ*) |
| 66 | 65 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ∈
ℝ*) |
| 67 | 23 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 68 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 69 | | ioogtlb 39717 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
(𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < (𝑄‘𝑗)) |
| 70 | 66, 67, 68, 69 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < (𝑄‘𝑗)) |
| 71 | | fourierdlem46.qiso |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑄 Isom < , < ((0...𝑀), 𝐻)) |
| 72 | 71 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑄 Isom < , < ((0...𝑀), 𝐻)) |
| 73 | 15 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 ∈ (0...𝑀)) |
| 74 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑗 ∈ (0...𝑀)) |
| 75 | | isorel 6576 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝐼 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑀))) → (𝐼 < 𝑗 ↔ (𝑄‘𝐼) < (𝑄‘𝑗))) |
| 76 | 72, 73, 74, 75 | syl12anc 1324 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝐼 < 𝑗 ↔ (𝑄‘𝐼) < (𝑄‘𝑗))) |
| 77 | 70, 76 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 < 𝑗) |
| 78 | | iooltub 39735 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
(𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝑗) < (𝑄‘(𝐼 + 1))) |
| 79 | 66, 67, 68, 78 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝑗) < (𝑄‘(𝐼 + 1))) |
| 80 | 20 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝐼 + 1) ∈ (0...𝑀)) |
| 81 | | isorel 6576 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑗 ∈ (0...𝑀) ∧ (𝐼 + 1) ∈ (0...𝑀))) → (𝑗 < (𝐼 + 1) ↔ (𝑄‘𝑗) < (𝑄‘(𝐼 + 1)))) |
| 82 | 72, 74, 80, 81 | syl12anc 1324 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑗 < (𝐼 + 1) ↔ (𝑄‘𝑗) < (𝑄‘(𝐼 + 1)))) |
| 83 | 79, 82 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑗 < (𝐼 + 1)) |
| 84 | | btwnnz 11453 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐼 ∈ ℤ ∧ 𝐼 < 𝑗 ∧ 𝑗 < (𝐼 + 1)) → ¬ 𝑗 ∈ ℤ) |
| 85 | 64, 77, 83, 84 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → ¬ 𝑗 ∈ ℤ) |
| 86 | 56, 57, 61, 85 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → ¬ 𝑗 ∈ ℤ) |
| 87 | 86 | adantllr 755 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → ¬ 𝑗 ∈ ℤ) |
| 88 | 55, 87 | pm2.65da 600 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ¬ (𝑄‘𝑗) = 𝑥) |
| 89 | 88 | nrexdv 3001 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) → ¬ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥) |
| 90 | 53, 89 | pm2.65da 600 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → ¬ 𝑥 ∈ ran 𝑄) |
| 91 | 90 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ ran 𝑄) |
| 92 | 45, 91 | condan 835 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹) |
| 93 | 92 | ralrimiva 2966 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
| 94 | | dfss3 3592 |
. . . . . . . . . . . . . 14
⊢ (((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
| 95 | 93, 94 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
| 96 | 95 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
| 97 | 65 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) ∈
ℝ*) |
| 98 | 23 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 99 | | icossre 12254 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝐼) ∈ ℝ ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) →
((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ ℝ) |
| 100 | 17, 23, 99 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ ℝ) |
| 101 | 100 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ) |
| 102 | 101 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ ℝ) |
| 103 | 17 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) ∈ ℝ) |
| 104 | 65 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ∈
ℝ*) |
| 105 | 23 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 106 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) |
| 107 | | icogelb 12225 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ≤ 𝑥) |
| 108 | 104, 105,
106, 107 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ≤ 𝑥) |
| 109 | 108 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) ≤ 𝑥) |
| 110 | | neqne 2802 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 = (𝑄‘𝐼) → 𝑥 ≠ (𝑄‘𝐼)) |
| 111 | 110 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ≠ (𝑄‘𝐼)) |
| 112 | 103, 102,
109, 111 | leneltd 10191 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) < 𝑥) |
| 113 | | icoltub 39732 |
. . . . . . . . . . . . . . 15
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1))) |
| 114 | 104, 105,
106, 113 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1))) |
| 115 | 114 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 < (𝑄‘(𝐼 + 1))) |
| 116 | 97, 98, 102, 112, 115 | eliood 39720 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 117 | 96, 116 | sseldd 3604 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
| 118 | 117 | adantllr 755 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
| 119 | 31, 118 | pm2.61dan 832 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹) |
| 120 | 119 | ralrimiva 2966 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ∀𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
| 121 | | dfss3 3592 |
. . . . . . . 8
⊢ (((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
| 122 | 120, 121 | sylibr 224 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
| 123 | | fourierdlem46.cn |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
| 124 | 123 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
| 125 | | rescncf 22700 |
. . . . . . 7
⊢ (((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹–cn→ℂ) → (𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∈ (((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))–cn→ℂ))) |
| 126 | 122, 124,
125 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∈ (((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))–cn→ℂ)) |
| 127 | 18, 24, 26, 126 | icocncflimc 40102 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼)) ∈ (((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
| 128 | 17 | leidd 10594 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘𝐼) ≤ (𝑄‘𝐼)) |
| 129 | 65, 23, 65, 128, 25 | elicod 12224 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘𝐼) ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) |
| 130 | | fvres 6207 |
. . . . . . . 8
⊢ ((𝑄‘𝐼) ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼)) = (𝐹‘(𝑄‘𝐼))) |
| 131 | 129, 130 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼)) = (𝐹‘(𝑄‘𝐼))) |
| 132 | 131 | eqcomd 2628 |
. . . . . 6
⊢ (𝜑 → (𝐹‘(𝑄‘𝐼)) = ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼))) |
| 133 | 132 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝐹‘(𝑄‘𝐼)) = ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼))) |
| 134 | | ioossico 12262 |
. . . . . . . . 9
⊢ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) |
| 135 | 134 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) |
| 136 | 135 | resabs1d 5428 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 137 | 136 | eqcomd 2628 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 138 | 137 | oveq1d 6665 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) = (((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
| 139 | 127, 133,
138 | 3eltr4d 2716 |
. . . 4
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝐹‘(𝑄‘𝐼)) ∈ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
| 140 | | ne0i 3921 |
. . . 4
⊢ ((𝐹‘(𝑄‘𝐼)) ∈ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
| 141 | 139, 140 | syl 17 |
. . 3
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
| 142 | | pnfxr 10092 |
. . . . . . . . 9
⊢ +∞
∈ ℝ* |
| 143 | 142 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → +∞ ∈
ℝ*) |
| 144 | 22 | ltpnfd 11955 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) < +∞) |
| 145 | 23, 143, 144 | xrltled 39486 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ +∞) |
| 146 | | iooss2 12211 |
. . . . . . . . 9
⊢
((+∞ ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ≤ +∞) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)(,)+∞)) |
| 147 | 142, 145,
146 | sylancr 695 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)(,)+∞)) |
| 148 | 147 | resabs1d 5428 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 149 | 148 | oveq1d 6665 |
. . . . . 6
⊢ (𝜑 → (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) = ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
| 150 | 149 | eqcomd 2628 |
. . . . 5
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) = (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
| 151 | 150 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) = (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
| 152 | | limcresi 23649 |
. . . . 5
⊢ ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ⊆ (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) |
| 153 | 17 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) ∈ ℝ) |
| 154 | | simpl 473 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → 𝜑) |
| 155 | 2 | renegcli 10342 |
. . . . . . . . . . . 12
⊢ -π
∈ ℝ |
| 156 | 155 | rexri 10097 |
. . . . . . . . . . 11
⊢ -π
∈ ℝ* |
| 157 | 156 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → -π ∈
ℝ*) |
| 158 | 2 | rexri 10097 |
. . . . . . . . . . 11
⊢ π
∈ ℝ* |
| 159 | 158 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → π ∈
ℝ*) |
| 160 | 4, 3, 17, 22, 25, 34 | fourierdlem10 40334 |
. . . . . . . . . . 11
⊢ (𝜑 → (-π ≤ (𝑄‘𝐼) ∧ (𝑄‘(𝐼 + 1)) ≤ π)) |
| 161 | 160 | simpld 475 |
. . . . . . . . . 10
⊢ (𝜑 → -π ≤ (𝑄‘𝐼)) |
| 162 | 160 | simprd 479 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ π) |
| 163 | 17, 22, 3, 25, 162 | ltletrd 10197 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘𝐼) < π) |
| 164 | 157, 159,
65, 161, 163 | elicod 12224 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘𝐼) ∈ (-π[,)π)) |
| 165 | 164 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) ∈ (-π[,)π)) |
| 166 | | simpr 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → ¬ (𝑄‘𝐼) ∈ dom 𝐹) |
| 167 | 165, 166 | eldifd 3585 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) |
| 168 | 154, 167 | jca 554 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (𝜑 ∧ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹))) |
| 169 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑥 = (𝑄‘𝐼) → (𝑥 ∈ ((-π[,)π) ∖ dom 𝐹) ↔ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹))) |
| 170 | 169 | anbi2d 740 |
. . . . . . . 8
⊢ (𝑥 = (𝑄‘𝐼) → ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) ↔ (𝜑 ∧ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)))) |
| 171 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑄‘𝐼) → (𝑥(,)+∞) = ((𝑄‘𝐼)(,)+∞)) |
| 172 | 171 | reseq2d 5396 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑄‘𝐼) → (𝐹 ↾ (𝑥(,)+∞)) = (𝐹 ↾ ((𝑄‘𝐼)(,)+∞))) |
| 173 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑄‘𝐼) → 𝑥 = (𝑄‘𝐼)) |
| 174 | 172, 173 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑥 = (𝑄‘𝐼) → ((𝐹 ↾ (𝑥(,)+∞)) limℂ 𝑥) = ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼))) |
| 175 | 174 | neeq1d 2853 |
. . . . . . . 8
⊢ (𝑥 = (𝑄‘𝐼) → (((𝐹 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅ ↔ ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅)) |
| 176 | 170, 175 | imbi12d 334 |
. . . . . . 7
⊢ (𝑥 = (𝑄‘𝐼) → (((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) ↔ ((𝜑 ∧ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅))) |
| 177 | | fourierdlem46.rlim |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
| 178 | 176, 177 | vtoclg 3266 |
. . . . . 6
⊢ ((𝑄‘𝐼) ∈ ℝ → ((𝜑 ∧ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅)) |
| 179 | 153, 168,
178 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅) |
| 180 | | ssn0 3976 |
. . . . 5
⊢ ((((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ⊆ (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ∧ ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅) → (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
| 181 | 152, 179,
180 | sylancr 695 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
| 182 | 151, 181 | eqnetrd 2861 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
| 183 | 141, 182 | pm2.61dan 832 |
. 2
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
| 184 | 65 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘𝐼) ∈
ℝ*) |
| 185 | 22 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 186 | 25 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘𝐼) < (𝑄‘(𝐼 + 1))) |
| 187 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 = (𝑄‘(𝐼 + 1))) |
| 188 | | simpl 473 |
. . . . . . . . . . . . 13
⊢ (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) |
| 189 | 187, 188 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
| 190 | 189 | adantll 750 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
| 191 | 190 | adantlr 751 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
| 192 | 95 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
| 193 | 65 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘𝐼) ∈
ℝ*) |
| 194 | 23 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 195 | 65 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ∈
ℝ*) |
| 196 | 22 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 197 | | iocssre 12253 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) → ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ ℝ) |
| 198 | 195, 196,
197 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ ℝ) |
| 199 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) |
| 200 | 198, 199 | sseldd 3604 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ) |
| 201 | 200 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ ℝ) |
| 202 | 23 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 203 | | iocgtlb 39724 |
. . . . . . . . . . . . . . 15
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < 𝑥) |
| 204 | 195, 202,
199, 203 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < 𝑥) |
| 205 | 204 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘𝐼) < 𝑥) |
| 206 | 22 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 207 | | iocleub 39725 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ≤ (𝑄‘(𝐼 + 1))) |
| 208 | 195, 202,
199, 207 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ≤ (𝑄‘(𝐼 + 1))) |
| 209 | 208 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ≤ (𝑄‘(𝐼 + 1))) |
| 210 | | neqne 2802 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑥 = (𝑄‘(𝐼 + 1)) → 𝑥 ≠ (𝑄‘(𝐼 + 1))) |
| 211 | 210 | necomd 2849 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 = (𝑄‘(𝐼 + 1)) → (𝑄‘(𝐼 + 1)) ≠ 𝑥) |
| 212 | 211 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ≠ 𝑥) |
| 213 | 201, 206,
209, 212 | leneltd 10191 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 < (𝑄‘(𝐼 + 1))) |
| 214 | 193, 194,
201, 205, 213 | eliood 39720 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 215 | 192, 214 | sseldd 3604 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
| 216 | 215 | adantllr 755 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
| 217 | 191, 216 | pm2.61dan 832 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹) |
| 218 | 217 | ralrimiva 2966 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ∀𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
| 219 | | dfss3 3592 |
. . . . . . . 8
⊢ (((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
| 220 | 218, 219 | sylibr 224 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
| 221 | 123 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
| 222 | | rescncf 22700 |
. . . . . . 7
⊢ (((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹–cn→ℂ) → (𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∈ (((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))–cn→ℂ))) |
| 223 | 220, 221,
222 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∈ (((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))–cn→ℂ)) |
| 224 | 184, 185,
186, 223 | ioccncflimc 40098 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
| 225 | 22 | leidd 10594 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ (𝑄‘(𝐼 + 1))) |
| 226 | 65, 23, 23, 25, 225 | eliocd 39730 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) |
| 227 | | fvres 6207 |
. . . . . . . . 9
⊢ ((𝑄‘(𝐼 + 1)) ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) = (𝐹‘(𝑄‘(𝐼 + 1)))) |
| 228 | 226, 227 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) = (𝐹‘(𝑄‘(𝐼 + 1)))) |
| 229 | 228 | eqcomd 2628 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘(𝑄‘(𝐼 + 1))) = ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1)))) |
| 230 | | ioossioc 39713 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) |
| 231 | | resabs1 5427 |
. . . . . . . . . . 11
⊢ (((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 232 | 230, 231 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 233 | 232 | eqcomi 2631 |
. . . . . . . . 9
⊢ (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 234 | 233 | oveq1i 6660 |
. . . . . . . 8
⊢ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) |
| 235 | 234 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
| 236 | 229, 235 | eleq12d 2695 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ↔ ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))))) |
| 237 | 236 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ↔ ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))))) |
| 238 | 224, 237 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
| 239 | | ne0i 3921 |
. . . 4
⊢ ((𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
| 240 | 238, 239 | syl 17 |
. . 3
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
| 241 | | mnfxr 10096 |
. . . . . . . . 9
⊢ -∞
∈ ℝ* |
| 242 | 241 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → -∞ ∈
ℝ*) |
| 243 | 17 | mnfltd 11958 |
. . . . . . . . . 10
⊢ (𝜑 → -∞ < (𝑄‘𝐼)) |
| 244 | 242, 65, 243 | xrltled 39486 |
. . . . . . . . 9
⊢ (𝜑 → -∞ ≤ (𝑄‘𝐼)) |
| 245 | | iooss1 12210 |
. . . . . . . . 9
⊢
((-∞ ∈ ℝ* ∧ -∞ ≤ (𝑄‘𝐼)) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-∞(,)(𝑄‘(𝐼 + 1)))) |
| 246 | 241, 244,
245 | sylancr 695 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-∞(,)(𝑄‘(𝐼 + 1)))) |
| 247 | 246 | resabs1d 5428 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 248 | 247 | eqcomd 2628 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 249 | 248 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 250 | 249 | oveq1d 6665 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
| 251 | | limcresi 23649 |
. . . . 5
⊢ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ⊆ (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) |
| 252 | 22 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 253 | | simpl 473 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → 𝜑) |
| 254 | 156 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → -π ∈
ℝ*) |
| 255 | 158 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → π ∈
ℝ*) |
| 256 | 23 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 257 | 4, 17, 22, 161, 25 | lelttrd 10195 |
. . . . . . . . . 10
⊢ (𝜑 → -π < (𝑄‘(𝐼 + 1))) |
| 258 | 257 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → -π < (𝑄‘(𝐼 + 1))) |
| 259 | 162 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ≤ π) |
| 260 | 254, 255,
256, 258, 259 | eliocd 39730 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈
(-π(,]π)) |
| 261 | | simpr 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) |
| 262 | 260, 261 | eldifd 3585 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹)) |
| 263 | 253, 262 | jca 554 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹))) |
| 264 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (𝑥 ∈ ((-π(,]π) ∖ dom 𝐹) ↔ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹))) |
| 265 | 264 | anbi2d 740 |
. . . . . . . 8
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) ↔ (𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹)))) |
| 266 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (-∞(,)𝑥) = (-∞(,)(𝑄‘(𝐼 + 1)))) |
| 267 | 266 | reseq2d 5396 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (𝐹 ↾ (-∞(,)𝑥)) = (𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1))))) |
| 268 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → 𝑥 = (𝑄‘(𝐼 + 1))) |
| 269 | 267, 268 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → ((𝐹 ↾ (-∞(,)𝑥)) limℂ 𝑥) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
| 270 | 269 | neeq1d 2853 |
. . . . . . . 8
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (((𝐹 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅ ↔ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅)) |
| 271 | 265, 270 | imbi12d 334 |
. . . . . . 7
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) ↔ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹)) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅))) |
| 272 | | fourierdlem46.llim |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
| 273 | 271, 272 | vtoclg 3266 |
. . . . . 6
⊢ ((𝑄‘(𝐼 + 1)) ∈ ℝ → ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹)) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅)) |
| 274 | 252, 263,
273 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
| 275 | | ssn0 3976 |
. . . . 5
⊢ ((((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ⊆ (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ∧ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) → (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
| 276 | 251, 274,
275 | sylancr 695 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
| 277 | 250, 276 | eqnetrd 2861 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
| 278 | 240, 277 | pm2.61dan 832 |
. 2
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
| 279 | 183, 278 | jca 554 |
1
⊢ (𝜑 → (((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅ ∧ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅)) |