MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasle Structured version   Visualization version   GIF version

Theorem imasle 16183
Description: The ordering of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imasle.n 𝑁 = (le‘𝑅)
imasle.l = (le‘𝑈)
Assertion
Ref Expression
imasle (𝜑 = ((𝐹𝑁) ∘ 𝐹))

Proof of Theorem imasle
Dummy variables 𝑝 𝑞 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasbas.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2622 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2622 . . 3 (.r𝑅) = (.r𝑅)
5 eqid 2622 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
6 eqid 2622 . . 3 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
7 eqid 2622 . . 3 ( ·𝑠𝑅) = ( ·𝑠𝑅)
8 eqid 2622 . . 3 (·𝑖𝑅) = (·𝑖𝑅)
9 eqid 2622 . . 3 (TopOpen‘𝑅) = (TopOpen‘𝑅)
10 eqid 2622 . . 3 (dist‘𝑅) = (dist‘𝑅)
11 imasle.n . . 3 𝑁 = (le‘𝑅)
12 imasbas.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
13 imasbas.r . . . 4 (𝜑𝑅𝑍)
14 eqid 2622 . . . 4 (+g𝑈) = (+g𝑈)
151, 2, 12, 13, 3, 14imasplusg 16177 . . 3 (𝜑 → (+g𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
16 eqid 2622 . . . 4 (.r𝑈) = (.r𝑈)
171, 2, 12, 13, 4, 16imasmulr 16178 . . 3 (𝜑 → (.r𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
18 eqid 2622 . . . 4 ( ·𝑠𝑈) = ( ·𝑠𝑈)
191, 2, 12, 13, 5, 6, 7, 18imasvsca 16180 . . 3 (𝜑 → ( ·𝑠𝑈) = 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞))))
20 eqidd 2623 . . 3 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩})
21 eqid 2622 . . . 4 (TopSet‘𝑈) = (TopSet‘𝑈)
221, 2, 12, 13, 9, 21imastset 16182 . . 3 (𝜑 → (TopSet‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹))
23 eqid 2622 . . . 4 (dist‘𝑈) = (dist‘𝑈)
241, 2, 12, 13, 10, 23imasds 16173 . . 3 (𝜑 → (dist‘𝑈) = (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑢 ∈ ℕ ran (𝑧 ∈ {𝑤 ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑢)) ∣ ((𝐹‘(1st ‘(𝑤‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑤𝑢))) = 𝑦 ∧ ∀𝑣 ∈ (1...(𝑢 − 1))(𝐹‘(2nd ‘(𝑤𝑣))) = (𝐹‘(1st ‘(𝑤‘(𝑣 + 1)))))} ↦ (ℝ*𝑠 Σg ((dist‘𝑅) ∘ 𝑧))), ℝ*, < )))
25 eqidd 2623 . . 3 (𝜑 → ((𝐹𝑁) ∘ 𝐹) = ((𝐹𝑁) ∘ 𝐹))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 17, 19, 20, 22, 24, 25, 12, 13imasval 16171 . 2 (𝜑𝑈 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}))
27 eqid 2622 . . 3 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
2827imasvalstr 16112 . 2 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) Struct ⟨1, 12⟩
29 pleid 16049 . 2 le = Slot (le‘ndx)
30 snsstp2 4348 . . 3 {⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩} ⊆ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}
31 ssun2 3777 . . 3 {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
3230, 31sstri 3612 . 2 {⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
33 fof 6115 . . . . . 6 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
3412, 33syl 17 . . . . 5 (𝜑𝐹:𝑉𝐵)
35 fvex 6201 . . . . . 6 (Base‘𝑅) ∈ V
362, 35syl6eqel 2709 . . . . 5 (𝜑𝑉 ∈ V)
37 fex 6490 . . . . 5 ((𝐹:𝑉𝐵𝑉 ∈ V) → 𝐹 ∈ V)
3834, 36, 37syl2anc 693 . . . 4 (𝜑𝐹 ∈ V)
39 fvex 6201 . . . . 5 (le‘𝑅) ∈ V
4011, 39eqeltri 2697 . . . 4 𝑁 ∈ V
41 coexg 7117 . . . 4 ((𝐹 ∈ V ∧ 𝑁 ∈ V) → (𝐹𝑁) ∈ V)
4238, 40, 41sylancl 694 . . 3 (𝜑 → (𝐹𝑁) ∈ V)
43 cnvexg 7112 . . . 4 (𝐹 ∈ V → 𝐹 ∈ V)
4438, 43syl 17 . . 3 (𝜑𝐹 ∈ V)
45 coexg 7117 . . 3 (((𝐹𝑁) ∈ V ∧ 𝐹 ∈ V) → ((𝐹𝑁) ∘ 𝐹) ∈ V)
4642, 44, 45syl2anc 693 . 2 (𝜑 → ((𝐹𝑁) ∘ 𝐹) ∈ V)
47 imasle.l . 2 = (le‘𝑈)
4826, 28, 29, 32, 46, 47strfv3 15908 1 (𝜑 = ((𝐹𝑁) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  {csn 4177  {ctp 4181  cop 4183   ciun 4520  ccnv 5113  ccom 5118  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  1c1 9937  2c2 11070  cdc 11493  ndxcnx 15854  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  ·𝑖cip 15946  TopSetcts 15947  lecple 15948  distcds 15950  TopOpenctopn 16082  s cimas 16164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-imas 16168
This theorem is referenced by:  imasless  16200  imasleval  16201
  Copyright terms: Public domain W3C validator