| Step | Hyp | Ref
| Expression |
| 1 | | imo72b2lem0.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 2 | | imo72b2lem0.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1, 2 | ffvelrnd 6360 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
| 4 | 3 | recnd 10068 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℂ) |
| 5 | 4 | idi 2 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℂ) |
| 6 | | imo72b2lem0.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
| 7 | | imo72b2lem0.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 8 | 6, 7 | ffvelrnd 6360 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘𝐵) ∈ ℝ) |
| 9 | 8 | recnd 10068 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝐵) ∈ ℂ) |
| 10 | 9 | idi 2 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝐵) ∈ ℂ) |
| 11 | 5, 10 | mulcld 10060 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝐴) · (𝐺‘𝐵)) ∈ ℂ) |
| 12 | 11 | abscld 14175 |
. . 3
⊢ (𝜑 → (abs‘((𝐹‘𝐴) · (𝐺‘𝐵))) ∈ ℝ) |
| 13 | | imaco 5640 |
. . . . . 6
⊢ ((abs
∘ 𝐹) “ ℝ)
= (abs “ (𝐹 “
ℝ)) |
| 14 | 13 | eqcomi 2631 |
. . . . 5
⊢ (abs
“ (𝐹 “
ℝ)) = ((abs ∘ 𝐹) “ ℝ) |
| 15 | | imassrn 5477 |
. . . . . . 7
⊢ ((abs
∘ 𝐹) “ ℝ)
⊆ ran (abs ∘ 𝐹) |
| 16 | 15 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ran
(abs ∘ 𝐹)) |
| 17 | | absf 14077 |
. . . . . . . . . 10
⊢
abs:ℂ⟶ℝ |
| 18 | 17 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 →
abs:ℂ⟶ℝ) |
| 19 | | ax-resscn 9993 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℂ |
| 20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 21 | 18, 20 | fssresd 6071 |
. . . . . . . 8
⊢ (𝜑 → (abs ↾
ℝ):ℝ⟶ℝ) |
| 22 | 1, 21 | fco2d 38461 |
. . . . . . 7
⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
| 23 | | frn 6053 |
. . . . . . 7
⊢ ((abs
∘ 𝐹):ℝ⟶ℝ → ran (abs
∘ 𝐹) ⊆
ℝ) |
| 24 | 22, 23 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran (abs ∘ 𝐹) ⊆
ℝ) |
| 25 | 16, 24 | sstrd 3613 |
. . . . 5
⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆
ℝ) |
| 26 | 14, 25 | syl5eqss 3649 |
. . . 4
⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆
ℝ) |
| 27 | | 0re 10040 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
| 28 | 27 | ne0ii 3923 |
. . . . . . . . 9
⊢ ℝ
≠ ∅ |
| 29 | 28 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ≠
∅) |
| 30 | 29, 22 | wnefimgd 38460 |
. . . . . . 7
⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠
∅) |
| 31 | 30 | necomd 2849 |
. . . . . 6
⊢ (𝜑 → ∅ ≠ ((abs ∘
𝐹) “
ℝ)) |
| 32 | 14 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs
∘ 𝐹) “
ℝ)) |
| 33 | 31, 32 | neeqtrrd 2868 |
. . . . 5
⊢ (𝜑 → ∅ ≠ (abs “
(𝐹 “
ℝ))) |
| 34 | 33 | necomd 2849 |
. . . 4
⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ≠
∅) |
| 35 | | 1red 10055 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℝ) |
| 36 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 = 1) → 𝑐 = 1) |
| 37 | 36 | breq2d 4665 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 = 1) → (𝑥 ≤ 𝑐 ↔ 𝑥 ≤ 1)) |
| 38 | 37 | ralbidv 2986 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 = 1) → (∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝑐 ↔ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1)) |
| 39 | | imo72b2lem0.6 |
. . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) |
| 40 | 1, 39 | extoimad 38464 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1) |
| 41 | 35, 38, 40 | rspcedvd 3317 |
. . . 4
⊢ (𝜑 → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝑐) |
| 42 | 26, 34, 41 | suprcld 10986 |
. . 3
⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ,
< ) ∈ ℝ) |
| 43 | | 2re 11090 |
. . . 4
⊢ 2 ∈
ℝ |
| 44 | 43 | a1i 11 |
. . 3
⊢ (𝜑 → 2 ∈
ℝ) |
| 45 | | imo72b2lem0.5 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵))) = (2 · ((𝐹‘𝐴) · (𝐺‘𝐵)))) |
| 46 | 45 | idi 2 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵))) = (2 · ((𝐹‘𝐴) · (𝐺‘𝐵)))) |
| 47 | 46 | fveq2d 6195 |
. . . . . . 7
⊢ (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵)))) = (abs‘(2 · ((𝐹‘𝐴) · (𝐺‘𝐵))))) |
| 48 | | 2cnd 11093 |
. . . . . . . . 9
⊢ (𝜑 → 2 ∈
ℂ) |
| 49 | 48, 11 | mulcld 10060 |
. . . . . . . 8
⊢ (𝜑 → (2 · ((𝐹‘𝐴) · (𝐺‘𝐵))) ∈ ℂ) |
| 50 | 49 | abscld 14175 |
. . . . . . 7
⊢ (𝜑 → (abs‘(2 ·
((𝐹‘𝐴) · (𝐺‘𝐵)))) ∈ ℝ) |
| 51 | 47, 50 | eqeltrd 2701 |
. . . . . 6
⊢ (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵)))) ∈ ℝ) |
| 52 | 1 | idi 2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 53 | 2 | idi 2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 54 | 7 | idi 2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 55 | 53, 54 | readdcld 10069 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
| 56 | 52, 55 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℝ) |
| 57 | 56 | recnd 10068 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℂ) |
| 58 | 57 | abscld 14175 |
. . . . . . 7
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ ℝ) |
| 59 | 53, 54 | resubcld 10458 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
| 60 | 52, 59 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐴 − 𝐵)) ∈ ℝ) |
| 61 | 60 | recnd 10068 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘(𝐴 − 𝐵)) ∈ ℂ) |
| 62 | 61 | abscld 14175 |
. . . . . . 7
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 − 𝐵))) ∈ ℝ) |
| 63 | 58, 62 | readdcld 10069 |
. . . . . 6
⊢ (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴 − 𝐵)))) ∈ ℝ) |
| 64 | 44, 42 | remulcld 10070 |
. . . . . 6
⊢ (𝜑 → (2 · sup((abs
“ (𝐹 “
ℝ)), ℝ, < )) ∈ ℝ) |
| 65 | 57, 61 | abstrid 14195 |
. . . . . 6
⊢ (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵)))) ≤ ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴 − 𝐵))))) |
| 66 | 1, 55 | fvco3d 38462 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) = (abs‘(𝐹‘(𝐴 + 𝐵)))) |
| 67 | 55, 22 | wfximgfd 38463 |
. . . . . . . . . . 11
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ)) |
| 68 | 32 | idi 2 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs
∘ 𝐹) “
ℝ)) |
| 69 | 67, 68 | eleqtrrd 2704 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ (abs “ (𝐹 “ ℝ))) |
| 70 | 66, 69 | eqeltrrd 2702 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ (abs “ (𝐹 “ ℝ))) |
| 71 | 26, 34, 41, 70 | suprubd 10985 |
. . . . . . . 8
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, <
)) |
| 72 | 1, 59 | fvco3d 38462 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 − 𝐵)) = (abs‘(𝐹‘(𝐴 − 𝐵)))) |
| 73 | 59, 22 | wfximgfd 38463 |
. . . . . . . . . . 11
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 − 𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ)) |
| 74 | 73, 32 | eleqtrrd 2704 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 − 𝐵)) ∈ (abs “ (𝐹 “ ℝ))) |
| 75 | 72, 74 | eqeltrrd 2702 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 − 𝐵))) ∈ (abs “ (𝐹 “ ℝ))) |
| 76 | 26, 34, 41, 75 | suprubd 10985 |
. . . . . . . 8
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 − 𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, <
)) |
| 77 | 58, 62, 42, 42, 71, 76 | le2addd 10646 |
. . . . . . 7
⊢ (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴 − 𝐵)))) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ,
< ) + sup((abs “ (𝐹 “ ℝ)), ℝ, <
))) |
| 78 | 42 | recnd 10068 |
. . . . . . . . 9
⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ,
< ) ∈ ℂ) |
| 79 | 78 | 2timesd 11275 |
. . . . . . . 8
⊢ (𝜑 → (2 · sup((abs
“ (𝐹 “
ℝ)), ℝ, < )) = (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) +
sup((abs “ (𝐹 “
ℝ)), ℝ, < ))) |
| 80 | 79 | eqcomd 2628 |
. . . . . . 7
⊢ (𝜑 → (sup((abs “ (𝐹 “ ℝ)), ℝ,
< ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = (2
· sup((abs “ (𝐹 “ ℝ)), ℝ, <
))) |
| 81 | 80, 64 | eqeltrd 2701 |
. . . . . . 7
⊢ (𝜑 → (sup((abs “ (𝐹 “ ℝ)), ℝ,
< ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ∈
ℝ) |
| 82 | 77, 80, 63, 81 | leeq2d 38456 |
. . . . . 6
⊢ (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴 − 𝐵)))) ≤ (2 · sup((abs “
(𝐹 “ ℝ)),
ℝ, < ))) |
| 83 | 51, 63, 64, 65, 82 | letrd 10194 |
. . . . 5
⊢ (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵)))) ≤ (2 · sup((abs “
(𝐹 “ ℝ)),
ℝ, < ))) |
| 84 | 83, 47, 51, 64 | leeq1d 38455 |
. . . 4
⊢ (𝜑 → (abs‘(2 ·
((𝐹‘𝐴) · (𝐺‘𝐵)))) ≤ (2 · sup((abs “
(𝐹 “ ℝ)),
ℝ, < ))) |
| 85 | | 0le2 11111 |
. . . . . 6
⊢ 0 ≤
2 |
| 86 | 85 | a1i 11 |
. . . . 5
⊢ (𝜑 → 0 ≤ 2) |
| 87 | 3 | idi 2 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
| 88 | 8 | idi 2 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝐵) ∈ ℝ) |
| 89 | 87, 88 | remulcld 10070 |
. . . . 5
⊢ (𝜑 → ((𝐹‘𝐴) · (𝐺‘𝐵)) ∈ ℝ) |
| 90 | 86, 44, 89 | absmulrposd 38457 |
. . . 4
⊢ (𝜑 → (abs‘(2 ·
((𝐹‘𝐴) · (𝐺‘𝐵)))) = (2 · (abs‘((𝐹‘𝐴) · (𝐺‘𝐵))))) |
| 91 | 84, 90, 50, 64 | leeq1d 38455 |
. . 3
⊢ (𝜑 → (2 ·
(abs‘((𝐹‘𝐴) · (𝐺‘𝐵)))) ≤ (2 · sup((abs “
(𝐹 “ ℝ)),
ℝ, < ))) |
| 92 | | 2pos 11112 |
. . . 4
⊢ 0 <
2 |
| 93 | 92 | a1i 11 |
. . 3
⊢ (𝜑 → 0 < 2) |
| 94 | 12, 42, 44, 91, 93 | wwlemuld 38454 |
. 2
⊢ (𝜑 → (abs‘((𝐹‘𝐴) · (𝐺‘𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, <
)) |
| 95 | 4, 9 | absmuld 14193 |
. . 3
⊢ (𝜑 → (abs‘((𝐹‘𝐴) · (𝐺‘𝐵))) = ((abs‘(𝐹‘𝐴)) · (abs‘(𝐺‘𝐵)))) |
| 96 | 95 | idi 2 |
. 2
⊢ (𝜑 → (abs‘((𝐹‘𝐴) · (𝐺‘𝐵))) = ((abs‘(𝐹‘𝐴)) · (abs‘(𝐺‘𝐵)))) |
| 97 | 94, 96, 12, 42 | leeq1d 38455 |
1
⊢ (𝜑 → ((abs‘(𝐹‘𝐴)) · (abs‘(𝐺‘𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, <
)) |