![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2timesd | Structured version Visualization version GIF version |
Description: Two times a number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
2timesd | ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | 2times 11145 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 (class class class)co 6650 ℂcc 9934 + caddc 9939 · cmul 9941 2c2 11070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-mulcl 9998 ax-mulcom 10000 ax-mulass 10002 ax-distr 10003 ax-1rid 10006 ax-cnre 10009 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-2 11079 |
This theorem is referenced by: lt2addmuld 11282 fzctr 12451 flhalf 12631 2submod 12731 modaddmodup 12733 m1expeven 12907 expmulnbnd 12996 discr 13001 crre 13854 imval2 13891 abslem2 14079 sqreulem 14099 amgm2 14109 caucvgrlem 14403 iseraltlem2 14413 iseraltlem3 14414 arisum2 14593 fallrisefac 14756 efival 14882 sinadd 14894 cosadd 14895 addsin 14900 subsin 14901 cosmul 14903 addcos 14904 subcos 14905 sin2t 14907 cos2t 14908 eirrlem 14932 sadadd2lem2 15172 pythagtriplem12 15531 pythagtriplem15 15534 pythagtriplem17 15536 difsqpwdvds 15591 prmreclem6 15625 4sqlem11 15659 4sqlem12 15660 vdwlem3 15687 vdwlem8 15692 vdwlem9 15693 vdwlem10 15694 bl2in 22205 tchcphlem1 23034 nmparlem 23038 cphipval2 23040 minveclem2 23197 minveclem4 23203 ovolunlem1 23265 uniioombllem5 23355 sineq0 24273 cosordlem 24277 tanarg 24365 heron 24565 dcubic1 24572 dquartlem1 24578 quart1lem 24582 sinasin 24616 asinsin 24619 cosasin 24631 efiatan2 24644 2efiatan 24645 atantan 24650 atantayl2 24665 leibpi 24669 log2cnv 24671 lgamgulmlem2 24756 lgamgulmlem3 24757 basellem5 24811 basellem6 24812 ppiub 24929 chtublem 24936 chtub 24937 bcctr 25000 pcbcctr 25001 bcmono 25002 bcmax 25003 bcp1ctr 25004 bposlem1 25009 bposlem2 25010 bposlem9 25017 gausslemma2d 25099 lgsquadlem1 25105 chebbnd1lem2 25159 dchrisumlem2 25179 dchrisum0lem1b 25204 mulog2sumlem1 25223 logdivbnd 25245 selberg3lem1 25246 pntrsumbnd2 25256 selbergr 25257 selberg3r 25258 selberg34r 25260 pntpbnd1a 25274 pntpbnd2 25276 pntlemg 25287 pntlemr 25291 pntlemo 25296 ostth2lem1 25307 ostth3 25327 finsumvtxdg2ssteplem4 26444 nvge0 27528 minvecolem2 27731 minvecolem4 27736 cdj3lem1 29293 sqsscirc1 29954 bcprod 31624 unbdqndv2lem1 32500 mblfinlem3 33448 ftc1anclem7 33491 areacirclem1 33500 areacirc 33505 isbnd3 33583 pellfundex 37450 rmxluc 37501 rmyluc 37502 rmxdbl 37504 rmydbl 37505 jm2.24nn 37526 acongeq 37550 jm2.16nn0 37571 jm3.1lem1 37584 jm3.1lem2 37585 imo72b2lem0 38465 sineq0ALT 39173 sinmulcos 40076 stirlinglem5 40295 fourierdlem79 40402 fouriercnp 40443 hoicvrrex 40770 2leaddle2 41312 lighneallem4a 41525 nnpw2pmod 42377 sinhpcosh 42481 |
Copyright terms: Public domain | W3C validator |