Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2lem0 Structured version   Visualization version   Unicode version

Theorem imo72b2lem0 38465
Description: Lemma for imo72b2 38475. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2lem0.1  |-  ( ph  ->  F : RR --> RR )
imo72b2lem0.2  |-  ( ph  ->  G : RR --> RR )
imo72b2lem0.3  |-  ( ph  ->  A  e.  RR )
imo72b2lem0.4  |-  ( ph  ->  B  e.  RR )
imo72b2lem0.5  |-  ( ph  ->  ( ( F `  ( A  +  B
) )  +  ( F `  ( A  -  B ) ) )  =  ( 2  x.  ( ( F `
 A )  x.  ( G `  B
) ) ) )
imo72b2lem0.6  |-  ( ph  ->  A. y  e.  RR  ( abs `  ( F `
 y ) )  <_  1 )
Assertion
Ref Expression
imo72b2lem0  |-  ( ph  ->  ( ( abs `  ( F `  A )
)  x.  ( abs `  ( G `  B
) ) )  <_  sup ( ( abs " ( F " RR ) ) ,  RR ,  <  ) )
Distinct variable groups:    y, F    ph, y
Allowed substitution hints:    A( y)    B( y)    G( y)

Proof of Theorem imo72b2lem0
Dummy variables  c  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imo72b2lem0.1 . . . . . . . 8  |-  ( ph  ->  F : RR --> RR )
2 imo72b2lem0.3 . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
31, 2ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( F `  A
)  e.  RR )
43recnd 10068 . . . . . 6  |-  ( ph  ->  ( F `  A
)  e.  CC )
54idi 2 . . . . 5  |-  ( ph  ->  ( F `  A
)  e.  CC )
6 imo72b2lem0.2 . . . . . . . 8  |-  ( ph  ->  G : RR --> RR )
7 imo72b2lem0.4 . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
86, 7ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( G `  B
)  e.  RR )
98recnd 10068 . . . . . 6  |-  ( ph  ->  ( G `  B
)  e.  CC )
109idi 2 . . . . 5  |-  ( ph  ->  ( G `  B
)  e.  CC )
115, 10mulcld 10060 . . . 4  |-  ( ph  ->  ( ( F `  A )  x.  ( G `  B )
)  e.  CC )
1211abscld 14175 . . 3  |-  ( ph  ->  ( abs `  (
( F `  A
)  x.  ( G `
 B ) ) )  e.  RR )
13 imaco 5640 . . . . . 6  |-  ( ( abs  o.  F )
" RR )  =  ( abs " ( F " RR ) )
1413eqcomi 2631 . . . . 5  |-  ( abs " ( F " RR ) )  =  ( ( abs  o.  F
) " RR )
15 imassrn 5477 . . . . . . 7  |-  ( ( abs  o.  F )
" RR )  C_  ran  ( abs  o.  F
)
1615a1i 11 . . . . . 6  |-  ( ph  ->  ( ( abs  o.  F ) " RR )  C_  ran  ( abs 
o.  F ) )
17 absf 14077 . . . . . . . . . 10  |-  abs : CC
--> RR
1817a1i 11 . . . . . . . . 9  |-  ( ph  ->  abs : CC --> RR )
19 ax-resscn 9993 . . . . . . . . . 10  |-  RR  C_  CC
2019a1i 11 . . . . . . . . 9  |-  ( ph  ->  RR  C_  CC )
2118, 20fssresd 6071 . . . . . . . 8  |-  ( ph  ->  ( abs  |`  RR ) : RR --> RR )
221, 21fco2d 38461 . . . . . . 7  |-  ( ph  ->  ( abs  o.  F
) : RR --> RR )
23 frn 6053 . . . . . . 7  |-  ( ( abs  o.  F ) : RR --> RR  ->  ran  ( abs  o.  F
)  C_  RR )
2422, 23syl 17 . . . . . 6  |-  ( ph  ->  ran  ( abs  o.  F )  C_  RR )
2516, 24sstrd 3613 . . . . 5  |-  ( ph  ->  ( ( abs  o.  F ) " RR )  C_  RR )
2614, 25syl5eqss 3649 . . . 4  |-  ( ph  ->  ( abs " ( F " RR ) ) 
C_  RR )
27 0re 10040 . . . . . . . . . 10  |-  0  e.  RR
2827ne0ii 3923 . . . . . . . . 9  |-  RR  =/=  (/)
2928a1i 11 . . . . . . . 8  |-  ( ph  ->  RR  =/=  (/) )
3029, 22wnefimgd 38460 . . . . . . 7  |-  ( ph  ->  ( ( abs  o.  F ) " RR )  =/=  (/) )
3130necomd 2849 . . . . . 6  |-  ( ph  -> 
(/)  =/=  ( ( abs  o.  F ) " RR ) )
3214a1i 11 . . . . . 6  |-  ( ph  ->  ( abs " ( F " RR ) )  =  ( ( abs 
o.  F ) " RR ) )
3331, 32neeqtrrd 2868 . . . . 5  |-  ( ph  -> 
(/)  =/=  ( abs " ( F " RR ) ) )
3433necomd 2849 . . . 4  |-  ( ph  ->  ( abs " ( F " RR ) )  =/=  (/) )
35 1red 10055 . . . . 5  |-  ( ph  ->  1  e.  RR )
36 simpr 477 . . . . . . 7  |-  ( (
ph  /\  c  = 
1 )  ->  c  =  1 )
3736breq2d 4665 . . . . . 6  |-  ( (
ph  /\  c  = 
1 )  ->  (
x  <_  c  <->  x  <_  1 ) )
3837ralbidv 2986 . . . . 5  |-  ( (
ph  /\  c  = 
1 )  ->  ( A. x  e.  ( abs " ( F " RR ) ) x  <_ 
c  <->  A. x  e.  ( abs " ( F
" RR ) ) x  <_  1 ) )
39 imo72b2lem0.6 . . . . . 6  |-  ( ph  ->  A. y  e.  RR  ( abs `  ( F `
 y ) )  <_  1 )
401, 39extoimad 38464 . . . . 5  |-  ( ph  ->  A. x  e.  ( abs " ( F
" RR ) ) x  <_  1 )
4135, 38, 40rspcedvd 3317 . . . 4  |-  ( ph  ->  E. c  e.  RR  A. x  e.  ( abs " ( F " RR ) ) x  <_ 
c )
4226, 34, 41suprcld 10986 . . 3  |-  ( ph  ->  sup ( ( abs " ( F " RR ) ) ,  RR ,  <  )  e.  RR )
43 2re 11090 . . . 4  |-  2  e.  RR
4443a1i 11 . . 3  |-  ( ph  ->  2  e.  RR )
45 imo72b2lem0.5 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  ( A  +  B
) )  +  ( F `  ( A  -  B ) ) )  =  ( 2  x.  ( ( F `
 A )  x.  ( G `  B
) ) ) )
4645idi 2 . . . . . . . 8  |-  ( ph  ->  ( ( F `  ( A  +  B
) )  +  ( F `  ( A  -  B ) ) )  =  ( 2  x.  ( ( F `
 A )  x.  ( G `  B
) ) ) )
4746fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( F `  ( A  +  B )
)  +  ( F `
 ( A  -  B ) ) ) )  =  ( abs `  ( 2  x.  (
( F `  A
)  x.  ( G `
 B ) ) ) ) )
48 2cnd 11093 . . . . . . . . 9  |-  ( ph  ->  2  e.  CC )
4948, 11mulcld 10060 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  (
( F `  A
)  x.  ( G `
 B ) ) )  e.  CC )
5049abscld 14175 . . . . . . 7  |-  ( ph  ->  ( abs `  (
2  x.  ( ( F `  A )  x.  ( G `  B ) ) ) )  e.  RR )
5147, 50eqeltrd 2701 . . . . . 6  |-  ( ph  ->  ( abs `  (
( F `  ( A  +  B )
)  +  ( F `
 ( A  -  B ) ) ) )  e.  RR )
521idi 2 . . . . . . . . . 10  |-  ( ph  ->  F : RR --> RR )
532idi 2 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
547idi 2 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR )
5553, 54readdcld 10069 . . . . . . . . . 10  |-  ( ph  ->  ( A  +  B
)  e.  RR )
5652, 55ffvelrnd 6360 . . . . . . . . 9  |-  ( ph  ->  ( F `  ( A  +  B )
)  e.  RR )
5756recnd 10068 . . . . . . . 8  |-  ( ph  ->  ( F `  ( A  +  B )
)  e.  CC )
5857abscld 14175 . . . . . . 7  |-  ( ph  ->  ( abs `  ( F `  ( A  +  B ) ) )  e.  RR )
5953, 54resubcld 10458 . . . . . . . . . 10  |-  ( ph  ->  ( A  -  B
)  e.  RR )
6052, 59ffvelrnd 6360 . . . . . . . . 9  |-  ( ph  ->  ( F `  ( A  -  B )
)  e.  RR )
6160recnd 10068 . . . . . . . 8  |-  ( ph  ->  ( F `  ( A  -  B )
)  e.  CC )
6261abscld 14175 . . . . . . 7  |-  ( ph  ->  ( abs `  ( F `  ( A  -  B ) ) )  e.  RR )
6358, 62readdcld 10069 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  ( A  +  B ) ) )  +  ( abs `  ( F `  ( A  -  B ) ) ) )  e.  RR )
6444, 42remulcld 10070 . . . . . 6  |-  ( ph  ->  ( 2  x.  sup ( ( abs " ( F " RR ) ) ,  RR ,  <  ) )  e.  RR )
6557, 61abstrid 14195 . . . . . 6  |-  ( ph  ->  ( abs `  (
( F `  ( A  +  B )
)  +  ( F `
 ( A  -  B ) ) ) )  <_  ( ( abs `  ( F `  ( A  +  B
) ) )  +  ( abs `  ( F `  ( A  -  B ) ) ) ) )
661, 55fvco3d 38462 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs  o.  F ) `  ( A  +  B )
)  =  ( abs `  ( F `  ( A  +  B )
) ) )
6755, 22wfximgfd 38463 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs  o.  F ) `  ( A  +  B )
)  e.  ( ( abs  o.  F )
" RR ) )
6832idi 2 . . . . . . . . . . 11  |-  ( ph  ->  ( abs " ( F " RR ) )  =  ( ( abs 
o.  F ) " RR ) )
6967, 68eleqtrrd 2704 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs  o.  F ) `  ( A  +  B )
)  e.  ( abs " ( F " RR ) ) )
7066, 69eqeltrrd 2702 . . . . . . . . 9  |-  ( ph  ->  ( abs `  ( F `  ( A  +  B ) ) )  e.  ( abs " ( F " RR ) ) )
7126, 34, 41, 70suprubd 10985 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( F `  ( A  +  B ) ) )  <_  sup ( ( abs " ( F " RR ) ) ,  RR ,  <  ) )
721, 59fvco3d 38462 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs  o.  F ) `  ( A  -  B )
)  =  ( abs `  ( F `  ( A  -  B )
) ) )
7359, 22wfximgfd 38463 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs  o.  F ) `  ( A  -  B )
)  e.  ( ( abs  o.  F )
" RR ) )
7473, 32eleqtrrd 2704 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs  o.  F ) `  ( A  -  B )
)  e.  ( abs " ( F " RR ) ) )
7572, 74eqeltrrd 2702 . . . . . . . . 9  |-  ( ph  ->  ( abs `  ( F `  ( A  -  B ) ) )  e.  ( abs " ( F " RR ) ) )
7626, 34, 41, 75suprubd 10985 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( F `  ( A  -  B ) ) )  <_  sup ( ( abs " ( F " RR ) ) ,  RR ,  <  ) )
7758, 62, 42, 42, 71, 76le2addd 10646 . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( F `  ( A  +  B ) ) )  +  ( abs `  ( F `  ( A  -  B ) ) ) )  <_  ( sup ( ( abs " ( F " RR ) ) ,  RR ,  <  )  +  sup ( ( abs " ( F
" RR ) ) ,  RR ,  <  ) ) )
7842recnd 10068 . . . . . . . . 9  |-  ( ph  ->  sup ( ( abs " ( F " RR ) ) ,  RR ,  <  )  e.  CC )
79782timesd 11275 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  sup ( ( abs " ( F " RR ) ) ,  RR ,  <  ) )  =  ( sup ( ( abs " ( F " RR ) ) ,  RR ,  <  )  +  sup ( ( abs " ( F
" RR ) ) ,  RR ,  <  ) ) )
8079eqcomd 2628 . . . . . . 7  |-  ( ph  ->  ( sup ( ( abs " ( F
" RR ) ) ,  RR ,  <  )  +  sup ( ( abs " ( F
" RR ) ) ,  RR ,  <  ) )  =  ( 2  x.  sup ( ( abs " ( F
" RR ) ) ,  RR ,  <  ) ) )
8180, 64eqeltrd 2701 . . . . . . 7  |-  ( ph  ->  ( sup ( ( abs " ( F
" RR ) ) ,  RR ,  <  )  +  sup ( ( abs " ( F
" RR ) ) ,  RR ,  <  ) )  e.  RR )
8277, 80, 63, 81leeq2d 38456 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  ( A  +  B ) ) )  +  ( abs `  ( F `  ( A  -  B ) ) ) )  <_  ( 2  x.  sup ( ( abs " ( F
" RR ) ) ,  RR ,  <  ) ) )
8351, 63, 64, 65, 82letrd 10194 . . . . 5  |-  ( ph  ->  ( abs `  (
( F `  ( A  +  B )
)  +  ( F `
 ( A  -  B ) ) ) )  <_  ( 2  x.  sup ( ( abs " ( F
" RR ) ) ,  RR ,  <  ) ) )
8483, 47, 51, 64leeq1d 38455 . . . 4  |-  ( ph  ->  ( abs `  (
2  x.  ( ( F `  A )  x.  ( G `  B ) ) ) )  <_  ( 2  x.  sup ( ( abs " ( F
" RR ) ) ,  RR ,  <  ) ) )
85 0le2 11111 . . . . . 6  |-  0  <_  2
8685a1i 11 . . . . 5  |-  ( ph  ->  0  <_  2 )
873idi 2 . . . . . 6  |-  ( ph  ->  ( F `  A
)  e.  RR )
888idi 2 . . . . . 6  |-  ( ph  ->  ( G `  B
)  e.  RR )
8987, 88remulcld 10070 . . . . 5  |-  ( ph  ->  ( ( F `  A )  x.  ( G `  B )
)  e.  RR )
9086, 44, 89absmulrposd 38457 . . . 4  |-  ( ph  ->  ( abs `  (
2  x.  ( ( F `  A )  x.  ( G `  B ) ) ) )  =  ( 2  x.  ( abs `  (
( F `  A
)  x.  ( G `
 B ) ) ) ) )
9184, 90, 50, 64leeq1d 38455 . . 3  |-  ( ph  ->  ( 2  x.  ( abs `  ( ( F `
 A )  x.  ( G `  B
) ) ) )  <_  ( 2  x. 
sup ( ( abs " ( F " RR ) ) ,  RR ,  <  ) ) )
92 2pos 11112 . . . 4  |-  0  <  2
9392a1i 11 . . 3  |-  ( ph  ->  0  <  2 )
9412, 42, 44, 91, 93wwlemuld 38454 . 2  |-  ( ph  ->  ( abs `  (
( F `  A
)  x.  ( G `
 B ) ) )  <_  sup (
( abs " ( F " RR ) ) ,  RR ,  <  ) )
954, 9absmuld 14193 . . 3  |-  ( ph  ->  ( abs `  (
( F `  A
)  x.  ( G `
 B ) ) )  =  ( ( abs `  ( F `
 A ) )  x.  ( abs `  ( G `  B )
) ) )
9695idi 2 . 2  |-  ( ph  ->  ( abs `  (
( F `  A
)  x.  ( G `
 B ) ) )  =  ( ( abs `  ( F `
 A ) )  x.  ( abs `  ( G `  B )
) ) )
9794, 96, 12, 42leeq1d 38455 1  |-  ( ph  ->  ( ( abs `  ( F `  A )
)  x.  ( abs `  ( G `  B
) ) )  <_  sup ( ( abs " ( F " RR ) ) ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ran crn 5115   "cima 5117    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   2c2 11070   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  imo72b2  38475
  Copyright terms: Public domain W3C validator