![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iocborel | Structured version Visualization version GIF version |
Description: A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
iocborel.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
iocborel.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
iocborel.t | ⊢ 𝐽 = (topGen‘ran (,)) |
iocborel.b | ⊢ 𝐵 = (SalGen‘𝐽) |
Ref | Expression |
---|---|
iocborel | ⊢ (𝜑 → (𝐴(,]𝐶) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iocborel.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | iocborel.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
3 | 1, 2 | iooiinioc 39783 | . . 3 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) = (𝐴(,]𝐶)) |
4 | 3 | eqcomd 2628 | . 2 ⊢ (𝜑 → (𝐴(,]𝐶) = ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛)))) |
5 | iocborel.t | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
6 | iocborel.b | . . . . . . 7 ⊢ 𝐵 = (SalGen‘𝐽) | |
7 | 5, 6 | bor1sal 40573 | . . . . . 6 ⊢ 𝐵 ∈ SAlg |
8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐵 ∈ SAlg) |
9 | nnct 12780 | . . . . . 6 ⊢ ℕ ≼ ω | |
10 | 9 | a1i 11 | . . . . 5 ⊢ (⊤ → ℕ ≼ ω) |
11 | nnn0 39595 | . . . . . 6 ⊢ ℕ ≠ ∅ | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (⊤ → ℕ ≠ ∅) |
13 | 5, 6 | iooborel 40569 | . . . . . 6 ⊢ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵 |
14 | 13 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
15 | 8, 10, 12, 14 | saliincl 40545 | . . . 4 ⊢ (⊤ → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
16 | 15 | trud 1493 | . . 3 ⊢ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵 |
17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
18 | 4, 17 | eqeltrd 2701 | 1 ⊢ (𝜑 → (𝐴(,]𝐶) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ⊤wtru 1484 ∈ wcel 1990 ≠ wne 2794 ∅c0 3915 ∩ ciin 4521 class class class wbr 4653 ran crn 5115 ‘cfv 5888 (class class class)co 6650 ωcom 7065 ≼ cdom 7953 ℝcr 9935 1c1 9937 + caddc 9939 ℝ*cxr 10073 / cdiv 10684 ℕcn 11020 (,)cioo 12175 (,]cioc 12176 topGenctg 16098 SAlgcsalg 40528 SalGencsalgen 40532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-card 8765 df-acn 8768 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-ioo 12179 df-ioc 12180 df-fl 12593 df-topgen 16104 df-top 20699 df-bases 20750 df-salg 40529 df-salgen 40533 |
This theorem is referenced by: incsmflem 40950 decsmflem 40974 smfsuplem2 41018 |
Copyright terms: Public domain | W3C validator |