MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishashinf Structured version   Visualization version   GIF version

Theorem ishashinf 13247
Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf 8173. (Contributed by Thierry Arnoux, 5-Jul-2017.)
Assertion
Ref Expression
ishashinf 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(#‘𝑥) = 𝑛)
Distinct variable group:   𝑥,𝑛,𝐴

Proof of Theorem ishashinf
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fzfid 12772 . . . . . 6 (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin)
2 ficardom 8787 . . . . . 6 ((1...𝑛) ∈ Fin → (card‘(1...𝑛)) ∈ ω)
31, 2syl 17 . . . . 5 (𝑛 ∈ ℕ → (card‘(1...𝑛)) ∈ ω)
4 isinf 8173 . . . . 5 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑎))
5 breq2 4657 . . . . . . . 8 (𝑎 = (card‘(1...𝑛)) → (𝑥𝑎𝑥 ≈ (card‘(1...𝑛))))
65anbi2d 740 . . . . . . 7 (𝑎 = (card‘(1...𝑛)) → ((𝑥𝐴𝑥𝑎) ↔ (𝑥𝐴𝑥 ≈ (card‘(1...𝑛)))))
76exbidv 1850 . . . . . 6 (𝑎 = (card‘(1...𝑛)) → (∃𝑥(𝑥𝐴𝑥𝑎) ↔ ∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛)))))
87rspcva 3307 . . . . 5 (((card‘(1...𝑛)) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑎)) → ∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛))))
93, 4, 8syl2anr 495 . . . 4 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛))))
10 selpw 4165 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1110biimpri 218 . . . . . . 7 (𝑥𝐴𝑥 ∈ 𝒫 𝐴)
1211a1i 11 . . . . . 6 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥𝐴𝑥 ∈ 𝒫 𝐴))
13 hasheni 13136 . . . . . . . . 9 (𝑥 ≈ (card‘(1...𝑛)) → (#‘𝑥) = (#‘(card‘(1...𝑛))))
1413adantl 482 . . . . . . . 8 (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (#‘𝑥) = (#‘(card‘(1...𝑛))))
15 hashcard 13146 . . . . . . . . . . 11 ((1...𝑛) ∈ Fin → (#‘(card‘(1...𝑛))) = (#‘(1...𝑛)))
161, 15syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (#‘(card‘(1...𝑛))) = (#‘(1...𝑛)))
17 nnnn0 11299 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
18 hashfz1 13134 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (#‘(1...𝑛)) = 𝑛)
1917, 18syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (#‘(1...𝑛)) = 𝑛)
2016, 19eqtrd 2656 . . . . . . . . 9 (𝑛 ∈ ℕ → (#‘(card‘(1...𝑛))) = 𝑛)
2120ad2antlr 763 . . . . . . . 8 (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (#‘(card‘(1...𝑛))) = 𝑛)
2214, 21eqtrd 2656 . . . . . . 7 (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (#‘𝑥) = 𝑛)
2322ex 450 . . . . . 6 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥 ≈ (card‘(1...𝑛)) → (#‘𝑥) = 𝑛))
2412, 23anim12d 586 . . . . 5 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ((𝑥𝐴𝑥 ≈ (card‘(1...𝑛))) → (𝑥 ∈ 𝒫 𝐴 ∧ (#‘𝑥) = 𝑛)))
2524eximdv 1846 . . . 4 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛))) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (#‘𝑥) = 𝑛)))
269, 25mpd 15 . . 3 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (#‘𝑥) = 𝑛))
27 df-rex 2918 . . 3 (∃𝑥 ∈ 𝒫 𝐴(#‘𝑥) = 𝑛 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (#‘𝑥) = 𝑛))
2826, 27sylibr 224 . 2 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ 𝒫 𝐴(#‘𝑥) = 𝑛)
2928ralrimiva 2966 1 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(#‘𝑥) = 𝑛)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  wss 3574  𝒫 cpw 4158   class class class wbr 4653  cfv 5888  (class class class)co 6650  ωcom 7065  cen 7952  Fincfn 7955  cardccrd 8761  1c1 9937  cn 11020  0cn0 11292  ...cfz 12326  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  esumcst  30125  sge0rpcpnf  40638
  Copyright terms: Public domain W3C validator