| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgss | Structured version Visualization version Unicode version | ||
| Description: Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| itgss.1 |
|
| itgss.2 |
|
| Ref | Expression |
|---|---|
| itgss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 12342 |
. . . 4
| |
| 2 | iffalse 4095 |
. . . . . . . . . . . . . 14
| |
| 3 | 2 | ad2antll 765 |
. . . . . . . . . . . . 13
|
| 4 | eldif 3584 |
. . . . . . . . . . . . . 14
| |
| 5 | itgss.2 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 6 | 5 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . 20
|
| 7 | 6 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . 19
|
| 8 | ax-icn 9995 |
. . . . . . . . . . . . . . . . . . . . . 22
| |
| 9 | ine0 10465 |
. . . . . . . . . . . . . . . . . . . . . 22
| |
| 10 | expclz 12885 |
. . . . . . . . . . . . . . . . . . . . . 22
| |
| 11 | 8, 9, 10 | mp3an12 1414 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 12 | expne0i 12892 |
. . . . . . . . . . . . . . . . . . . . . 22
| |
| 13 | 8, 9, 12 | mp3an12 1414 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 14 | 11, 13 | div0d 10800 |
. . . . . . . . . . . . . . . . . . . 20
|
| 15 | 14 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . 19
|
| 16 | 7, 15 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
|
| 17 | 16 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
|
| 18 | re0 13892 |
. . . . . . . . . . . . . . . . 17
| |
| 19 | 17, 18 | syl6eq 2672 |
. . . . . . . . . . . . . . . 16
|
| 20 | 19 | ifeq1d 4104 |
. . . . . . . . . . . . . . 15
|
| 21 | ifid 4125 |
. . . . . . . . . . . . . . 15
| |
| 22 | 20, 21 | syl6eq 2672 |
. . . . . . . . . . . . . 14
|
| 23 | 4, 22 | sylan2br 493 |
. . . . . . . . . . . . 13
|
| 24 | 3, 23 | eqtr4d 2659 |
. . . . . . . . . . . 12
|
| 25 | 24 | expr 643 |
. . . . . . . . . . 11
|
| 26 | iftrue 4092 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | pm2.61d2 172 |
. . . . . . . . . 10
|
| 28 | iftrue 4092 |
. . . . . . . . . . 11
| |
| 29 | 28 | adantl 482 |
. . . . . . . . . 10
|
| 30 | 27, 29 | eqtr4d 2659 |
. . . . . . . . 9
|
| 31 | itgss.1 |
. . . . . . . . . . . . . 14
| |
| 32 | 31 | adantr 481 |
. . . . . . . . . . . . 13
|
| 33 | 32 | sseld 3602 |
. . . . . . . . . . . 12
|
| 34 | 33 | con3dimp 457 |
. . . . . . . . . . 11
|
| 35 | 34, 2 | syl 17 |
. . . . . . . . . 10
|
| 36 | iffalse 4095 |
. . . . . . . . . . 11
| |
| 37 | 36 | adantl 482 |
. . . . . . . . . 10
|
| 38 | 35, 37 | eqtr4d 2659 |
. . . . . . . . 9
|
| 39 | 30, 38 | pm2.61dan 832 |
. . . . . . . 8
|
| 40 | ifan 4134 |
. . . . . . . 8
| |
| 41 | ifan 4134 |
. . . . . . . 8
| |
| 42 | 39, 40, 41 | 3eqtr4g 2681 |
. . . . . . 7
|
| 43 | 42 | mpteq2dv 4745 |
. . . . . 6
|
| 44 | 43 | fveq2d 6195 |
. . . . 5
|
| 45 | 44 | oveq2d 6666 |
. . . 4
|
| 46 | 1, 45 | sylan2 491 |
. . 3
|
| 47 | 46 | sumeq2dv 14433 |
. 2
|
| 48 | eqid 2622 |
. . 3
| |
| 49 | 48 | dfitg 23536 |
. 2
|
| 50 | 48 | dfitg 23536 |
. 2
|
| 51 | 47, 49, 50 | 3eqtr4g 2681 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sum 14417 df-itg 23392 |
| This theorem is referenced by: itgss2 23579 areacirc 33505 |
| Copyright terms: Public domain | W3C validator |