Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfreuz Structured version   Visualization version   GIF version

Theorem liminfreuz 40035
Description: Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfreuz.1 𝑗𝐹
liminfreuz.2 (𝜑𝑀 ∈ ℤ)
liminfreuz.3 𝑍 = (ℤ𝑀)
liminfreuz.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
liminfreuz (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
Distinct variable groups:   𝑥,𝑘,𝐹   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem liminfreuz
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . 3 𝑙𝐹
2 liminfreuz.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 liminfreuz.3 . . 3 𝑍 = (ℤ𝑀)
4 liminfreuz.4 . . 3 (𝜑𝐹:𝑍⟶ℝ)
51, 2, 3, 4liminfreuzlem 40034 . 2 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙𝑍 𝑦 ≤ (𝐹𝑙))))
6 breq2 4657 . . . . . . . 8 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
76rexbidv 3052 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
87ralbidv 2986 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
9 fveq2 6191 . . . . . . . . . 10 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
109rexeqdv 3145 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥))
11 liminfreuz.1 . . . . . . . . . . . . 13 𝑗𝐹
12 nfcv 2764 . . . . . . . . . . . . 13 𝑗𝑙
1311, 12nffv 6198 . . . . . . . . . . . 12 𝑗(𝐹𝑙)
14 nfcv 2764 . . . . . . . . . . . 12 𝑗
15 nfcv 2764 . . . . . . . . . . . 12 𝑗𝑥
1613, 14, 15nfbr 4699 . . . . . . . . . . 11 𝑗(𝐹𝑙) ≤ 𝑥
17 nfv 1843 . . . . . . . . . . 11 𝑙(𝐹𝑗) ≤ 𝑥
18 fveq2 6191 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
1918breq1d 4663 . . . . . . . . . . 11 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
2016, 17, 19cbvrex 3168 . . . . . . . . . 10 (∃𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
2120a1i 11 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
2210, 21bitrd 268 . . . . . . . 8 (𝑖 = 𝑘 → (∃𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
2322cbvralv 3171 . . . . . . 7 (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
2423a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
258, 24bitrd 268 . . . . 5 (𝑦 = 𝑥 → (∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
2625cbvrexv 3172 . . . 4 (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
27 breq1 4656 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑙)))
2827ralbidv 2986 . . . . . 6 (𝑦 = 𝑥 → (∀𝑙𝑍 𝑦 ≤ (𝐹𝑙) ↔ ∀𝑙𝑍 𝑥 ≤ (𝐹𝑙)))
2915, 14, 13nfbr 4699 . . . . . . . 8 𝑗 𝑥 ≤ (𝐹𝑙)
30 nfv 1843 . . . . . . . 8 𝑙 𝑥 ≤ (𝐹𝑗)
3118breq2d 4665 . . . . . . . 8 (𝑙 = 𝑗 → (𝑥 ≤ (𝐹𝑙) ↔ 𝑥 ≤ (𝐹𝑗)))
3229, 30, 31cbvral 3167 . . . . . . 7 (∀𝑙𝑍 𝑥 ≤ (𝐹𝑙) ↔ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))
3332a1i 11 . . . . . 6 (𝑦 = 𝑥 → (∀𝑙𝑍 𝑥 ≤ (𝐹𝑙) ↔ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
3428, 33bitrd 268 . . . . 5 (𝑦 = 𝑥 → (∀𝑙𝑍 𝑦 ≤ (𝐹𝑙) ↔ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
3534cbvrexv 3172 . . . 4 (∃𝑦 ∈ ℝ ∀𝑙𝑍 𝑦 ≤ (𝐹𝑙) ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))
3626, 35anbi12i 733 . . 3 ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙𝑍 𝑦 ≤ (𝐹𝑙)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
3736a1i 11 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑙𝑍 𝑦 ≤ (𝐹𝑙)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
385, 37bitrd 268 1 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wnfc 2751  wral 2912  wrex 2913   class class class wbr 4653  wf 5884  cfv 5888  cr 9935  cle 10075  cz 11377  cuz 11687  lim infclsi 39983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-xneg 11946  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-ceil 12594  df-limsup 14202  df-liminf 39984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator