Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfltlem Structured version   Visualization version   GIF version

Theorem liminfltlem 40036
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfltlem.m (𝜑𝑀 ∈ ℤ)
liminfltlem.z 𝑍 = (ℤ𝑀)
liminfltlem.f (𝜑𝐹:𝑍⟶ℝ)
liminfltlem.r (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminfltlem.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
liminfltlem (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Distinct variable groups:   𝑗,𝐹,𝑘   𝑘,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑗)

Proof of Theorem liminfltlem
StepHypRef Expression
1 nfmpt1 4747 . . 3 𝑘(𝑘𝑍 ↦ -(𝐹𝑘))
2 liminfltlem.m . . 3 (𝜑𝑀 ∈ ℤ)
3 liminfltlem.z . . 3 𝑍 = (ℤ𝑀)
4 liminfltlem.f . . . . . 6 (𝜑𝐹:𝑍⟶ℝ)
54ffvelrnda 6359 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
65renegcld 10457 . . . 4 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℝ)
76fmptd2 39460 . . 3 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)):𝑍⟶ℝ)
83fvexi 6202 . . . . . . 7 𝑍 ∈ V
98mptex 6486 . . . . . 6 (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ V
109limsupcli 39989 . . . . 5 (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ*
1110a1i 11 . . . 4 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ*)
12 nfv 1843 . . . . . 6 𝑘𝜑
13 nfcv 2764 . . . . . 6 𝑘𝐹
1412, 13, 2, 3, 4liminfvaluz4 40031 . . . . 5 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
15 liminfltlem.r . . . . 5 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
1614, 15eqeltrrd 2702 . . . 4 (𝜑 → -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ)
1711, 16xnegrecl2d 39697 . . 3 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℝ)
18 liminfltlem.x . . 3 (𝜑𝑋 ∈ ℝ+)
191, 2, 3, 7, 17, 18limsupgt 40010 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
20 simpll 790 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
213uztrn2 11705 . . . . . 6 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2221adantll 750 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
23 negex 10279 . . . . . . . . . . 11 -(𝐹𝑘) ∈ V
24 fvmpt4 39446 . . . . . . . . . . 11 ((𝑘𝑍 ∧ -(𝐹𝑘) ∈ V) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2523, 24mpan2 707 . . . . . . . . . 10 (𝑘𝑍 → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2625adantl 482 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
2726oveq1d 6665 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) = (-(𝐹𝑘) − 𝑋))
285recnd 10068 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2918rpred 11872 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
3029adantr 481 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑋 ∈ ℝ)
3130recnd 10068 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑋 ∈ ℂ)
3228, 31negdi2d 10406 . . . . . . . 8 ((𝜑𝑘𝑍) → -((𝐹𝑘) + 𝑋) = (-(𝐹𝑘) − 𝑋))
3327, 32eqtr4d 2659 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) = -((𝐹𝑘) + 𝑋))
3417recnd 10068 . . . . . . . . . 10 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∈ ℂ)
3517rexnegd 39334 . . . . . . . . . . 11 (𝜑 → -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
3614, 35eqtr2d 2657 . . . . . . . . . 10 (𝜑 → -(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = (lim inf‘𝐹))
3734, 36negcon1ad 10387 . . . . . . . . 9 (𝜑 → -(lim inf‘𝐹) = (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
3837eqcomd 2628 . . . . . . . 8 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim inf‘𝐹))
3938adantr 481 . . . . . . 7 ((𝜑𝑘𝑍) → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim inf‘𝐹))
4033, 39breq12d 4666 . . . . . 6 ((𝜑𝑘𝑍) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ -((𝐹𝑘) + 𝑋) < -(lim inf‘𝐹)))
4115adantr 481 . . . . . . 7 ((𝜑𝑘𝑍) → (lim inf‘𝐹) ∈ ℝ)
425, 30readdcld 10069 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝐹𝑘) + 𝑋) ∈ ℝ)
4341, 42ltnegd 10605 . . . . . 6 ((𝜑𝑘𝑍) → ((lim inf‘𝐹) < ((𝐹𝑘) + 𝑋) ↔ -((𝐹𝑘) + 𝑋) < -(lim inf‘𝐹)))
4440, 43bitr4d 271 . . . . 5 ((𝜑𝑘𝑍) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4520, 22, 44syl2anc 693 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4645ralbidva 2985 . . 3 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4746rexbidva 3049 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) − 𝑋) < (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
4819, 47mpbid 222 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cr 9935   + caddc 9939  *cxr 10073   < clt 10074  cmin 10266  -cneg 10267  cz 11377  cuz 11687  +crp 11832  -𝑒cxne 11943  lim supclsp 14201  lim infclsi 39983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-ceil 12594  df-limsup 14202  df-liminf 39984
This theorem is referenced by:  liminflt  40037
  Copyright terms: Public domain W3C validator