Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre3lem Structured version   Visualization version   GIF version

Theorem limsupre3lem 39964
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller or equal than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger or equal than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre3lem.1 𝑗𝐹
limsupre3lem.2 (𝜑𝐴 ⊆ ℝ)
limsupre3lem.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsupre3lem (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝐹(𝑗)

Proof of Theorem limsupre3lem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limsupre3lem.1 . . 3 𝑗𝐹
2 limsupre3lem.2 . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsupre3lem.3 . . 3 (𝜑𝐹:𝐴⟶ℝ*)
41, 2, 3limsupre2 39957 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦))))
5 simp2 1062 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗))) → 𝑦 ∈ ℝ)
6 nfv 1843 . . . . . . . . . 10 𝑗(𝜑𝑦 ∈ ℝ)
7 simp3l 1089 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑦 < (𝐹𝑗))) → 𝑘𝑗)
8 simp1r 1086 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → 𝑦 ∈ ℝ)
98rexrd 10089 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → 𝑦 ∈ ℝ*)
103ffvelrnda 6359 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
1110adantlr 751 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
12113adant3 1081 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
13 simp3 1063 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → 𝑦 < (𝐹𝑗))
149, 12, 13xrltled 39486 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → 𝑦 ≤ (𝐹𝑗))
15143adant3l 1322 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑦 < (𝐹𝑗))) → 𝑦 ≤ (𝐹𝑗))
167, 15jca 554 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑦 < (𝐹𝑗))) → (𝑘𝑗𝑦 ≤ (𝐹𝑗)))
17163exp 1264 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (𝑗𝐴 → ((𝑘𝑗𝑦 < (𝐹𝑗)) → (𝑘𝑗𝑦 ≤ (𝐹𝑗)))))
186, 17reximdai 3012 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) → ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
1918ralimdv 2963 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
20193impia 1261 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗))) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)))
21 breq1 4656 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑗)))
2221anbi2d 740 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2322rexbidv 3052 . . . . . . . . 9 (𝑥 = 𝑦 → (∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2423ralbidv 2986 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2524rspcev 3309 . . . . . . 7 ((𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
265, 20, 25syl2anc 693 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
27263exp 1264 . . . . 5 (𝜑 → (𝑦 ∈ ℝ → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))))
2827rexlimdv 3030 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
29 peano2rem 10348 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
3029ad2antlr 763 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑥 − 1) ∈ ℝ)
31 nfv 1843 . . . . . . . . . 10 𝑗(𝜑𝑥 ∈ ℝ)
32 simp3l 1089 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑘𝑗)
33 simp1r 1086 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ∈ ℝ)
3429rexrd 10089 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ*)
3533, 34syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑥 − 1) ∈ ℝ*)
3633rexrd 10089 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ∈ ℝ*)
3710adantlr 751 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
38373adant3 1081 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝐹𝑗) ∈ ℝ*)
3933ltm1d 10956 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑥 − 1) < 𝑥)
40 simp3r 1090 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
4135, 36, 38, 39, 40xrltletrd 11992 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑥 − 1) < (𝐹𝑗))
4232, 41jca 554 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗)))
43423exp 1264 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝑗𝐴 → ((𝑘𝑗𝑥 ≤ (𝐹𝑗)) → (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗)))))
4431, 43reximdai 3012 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
4544ralimdv 2963 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
4645imp 445 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗)))
47 breq1 4656 . . . . . . . . . . 11 (𝑦 = (𝑥 − 1) → (𝑦 < (𝐹𝑗) ↔ (𝑥 − 1) < (𝐹𝑗)))
4847anbi2d 740 . . . . . . . . . 10 (𝑦 = (𝑥 − 1) → ((𝑘𝑗𝑦 < (𝐹𝑗)) ↔ (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
4948rexbidv 3052 . . . . . . . . 9 (𝑦 = (𝑥 − 1) → (∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
5049ralbidv 2986 . . . . . . . 8 (𝑦 = (𝑥 − 1) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
5150rspcev 3309 . . . . . . 7 (((𝑥 − 1) ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)))
5230, 46, 51syl2anc 693 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)))
5352ex 450 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗))))
5453rexlimdva 3031 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗))))
5528, 54impbid 202 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
56 simplr 792 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)) → 𝑦 ∈ ℝ)
5711adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) < 𝑦) → (𝐹𝑗) ∈ ℝ*)
58 rexr 10085 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
5958ad3antlr 767 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) < 𝑦) → 𝑦 ∈ ℝ*)
60 simpr 477 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) < 𝑦) → (𝐹𝑗) < 𝑦)
6157, 59, 60xrltled 39486 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) < 𝑦) → (𝐹𝑗) ≤ 𝑦)
6261ex 450 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) < 𝑦 → (𝐹𝑗) ≤ 𝑦))
6362imim2d 57 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) < 𝑦) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
6463ralimdva 2962 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
6564reximdv 3016 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
6665imp 445 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦))
67 breq2 4657 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑦))
6867imbi2d 330 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
6968ralbidv 2986 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
7069rexbidv 3052 . . . . . . . 8 (𝑥 = 𝑦 → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
7170rspcev 3309 . . . . . . 7 ((𝑦 ∈ ℝ ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7256, 66, 71syl2anc 693 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7372ex 450 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
7473rexlimdva 3031 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
75 peano2re 10209 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
7675ad2antlr 763 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (𝑥 + 1) ∈ ℝ)
7737adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) ∈ ℝ*)
78 rexr 10085 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
7978ad3antlr 767 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → 𝑥 ∈ ℝ*)
8075rexrd 10089 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
8180ad3antlr 767 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝑥 + 1) ∈ ℝ*)
82 simpr 477 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) ≤ 𝑥)
83 ltp1 10861 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
8483ad3antlr 767 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → 𝑥 < (𝑥 + 1))
8577, 79, 81, 82, 84xrlelttrd 11991 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) < (𝑥 + 1))
8685ex 450 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) ≤ 𝑥 → (𝐹𝑗) < (𝑥 + 1)))
8786imim2d 57 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
8887ralimdva 2962 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
8988reximdv 3016 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
9089imp 445 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1)))
91 breq2 4657 . . . . . . . . . . 11 (𝑦 = (𝑥 + 1) → ((𝐹𝑗) < 𝑦 ↔ (𝐹𝑗) < (𝑥 + 1)))
9291imbi2d 330 . . . . . . . . . 10 (𝑦 = (𝑥 + 1) → ((𝑘𝑗 → (𝐹𝑗) < 𝑦) ↔ (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
9392ralbidv 2986 . . . . . . . . 9 (𝑦 = (𝑥 + 1) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
9493rexbidv 3052 . . . . . . . 8 (𝑦 = (𝑥 + 1) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
9594rspcev 3309 . . . . . . 7 (((𝑥 + 1) ∈ ℝ ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦))
9676, 90, 95syl2anc 693 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦))
9796ex 450 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)))
9897rexlimdva 3031 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)))
9974, 98impbid 202 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
10055, 99anbi12d 747 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
1014, 100bitrd 268 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wnfc 2751  wral 2912  wrex 2913  wss 3574   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cmin 10266  lim supclsp 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ico 12181  df-limsup 14202
This theorem is referenced by:  limsupre3  39965
  Copyright terms: Public domain W3C validator