![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupubuzmpt | Structured version Visualization version GIF version |
Description: If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupubuzmpt.j | ⊢ Ⅎ𝑗𝜑 |
limsupubuzmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
limsupubuzmpt.b | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) |
limsupubuzmpt.n | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ≠ +∞) |
Ref | Expression |
---|---|
limsupubuzmpt | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 4747 | . . . 4 ⊢ Ⅎ𝑗(𝑗 ∈ 𝑍 ↦ 𝐵) | |
2 | limsupubuzmpt.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | limsupubuzmpt.j | . . . . 5 ⊢ Ⅎ𝑗𝜑 | |
4 | limsupubuzmpt.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
5 | eqid 2622 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 ↦ 𝐵) = (𝑗 ∈ 𝑍 ↦ 𝐵) | |
6 | 3, 4, 5 | fmptdf 6387 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
7 | limsupubuzmpt.n | . . . 4 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ≠ +∞) | |
8 | 1, 2, 6, 7 | limsupubuz 39945 | . . 3 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦) |
9 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵) = (𝑗 ∈ 𝑍 ↦ 𝐵)) |
10 | 9, 4 | fvmpt2d 6293 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) = 𝐵) |
11 | 10 | breq1d 4663 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) |
12 | 3, 11 | ralbida 2982 | . . . 4 ⊢ (𝜑 → (∀𝑗 ∈ 𝑍 ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦 ↔ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦)) |
13 | 12 | rexbidv 3052 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦)) |
14 | 8, 13 | mpbid 222 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦) |
15 | breq2 4657 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑥)) | |
16 | 15 | ralbidv 2986 | . . 3 ⊢ (𝑦 = 𝑥 → (∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥)) |
17 | 16 | cbvrexv 3172 | . 2 ⊢ (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) |
18 | 14, 17 | sylib 208 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 ℝcr 9935 +∞cpnf 10071 ≤ cle 10075 ℤ≥cuz 11687 lim supclsp 14201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-ico 12181 df-fz 12327 df-fl 12593 df-ceil 12594 df-limsup 14202 |
This theorem is referenced by: smflimsuplem2 41027 smflimsuplem5 41030 |
Copyright terms: Public domain | W3C validator |