![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincresunitlem2 | Structured version Visualization version GIF version |
Description: Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
Ref | Expression |
---|---|
lincresunit.b | ⊢ 𝐵 = (Base‘𝑀) |
lincresunit.r | ⊢ 𝑅 = (Scalar‘𝑀) |
lincresunit.e | ⊢ 𝐸 = (Base‘𝑅) |
lincresunit.u | ⊢ 𝑈 = (Unit‘𝑅) |
lincresunit.0 | ⊢ 0 = (0g‘𝑅) |
lincresunit.z | ⊢ 𝑍 = (0g‘𝑀) |
lincresunit.n | ⊢ 𝑁 = (invg‘𝑅) |
lincresunit.i | ⊢ 𝐼 = (invr‘𝑅) |
lincresunit.t | ⊢ · = (.r‘𝑅) |
lincresunit.g | ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) |
Ref | Expression |
---|---|
lincresunitlem2 | ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lincresunit.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑀) | |
2 | 1 | lmodring 18871 | . . . . 5 ⊢ (𝑀 ∈ LMod → 𝑅 ∈ Ring) |
3 | 2 | 3ad2ant2 1083 | . . . 4 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ Ring) |
4 | 3 | adantr 481 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝑅 ∈ Ring) |
5 | 4 | adantr 481 | . 2 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → 𝑅 ∈ Ring) |
6 | lincresunit.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
7 | lincresunit.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
8 | lincresunit.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
9 | lincresunit.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
10 | lincresunit.z | . . . 4 ⊢ 𝑍 = (0g‘𝑀) | |
11 | lincresunit.n | . . . 4 ⊢ 𝑁 = (invg‘𝑅) | |
12 | lincresunit.i | . . . 4 ⊢ 𝐼 = (invr‘𝑅) | |
13 | lincresunit.t | . . . 4 ⊢ · = (.r‘𝑅) | |
14 | lincresunit.g | . . . 4 ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) | |
15 | 6, 1, 7, 8, 9, 10, 11, 12, 13, 14 | lincresunitlem1 42264 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸) |
16 | 15 | adantr 481 | . 2 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸) |
17 | elmapi 7879 | . . . . 5 ⊢ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) → 𝐹:𝑆⟶𝐸) | |
18 | ffvelrn 6357 | . . . . . 6 ⊢ ((𝐹:𝑆⟶𝐸 ∧ 𝑌 ∈ 𝑆) → (𝐹‘𝑌) ∈ 𝐸) | |
19 | 18 | ex 450 | . . . . 5 ⊢ (𝐹:𝑆⟶𝐸 → (𝑌 ∈ 𝑆 → (𝐹‘𝑌) ∈ 𝐸)) |
20 | 17, 19 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) → (𝑌 ∈ 𝑆 → (𝐹‘𝑌) ∈ 𝐸)) |
21 | 20 | ad2antrl 764 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝑌 ∈ 𝑆 → (𝐹‘𝑌) ∈ 𝐸)) |
22 | 21 | imp 445 | . 2 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → (𝐹‘𝑌) ∈ 𝐸) |
23 | 7, 13 | ringcl 18561 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸 ∧ (𝐹‘𝑌) ∈ 𝐸) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) |
24 | 5, 16, 22, 23 | syl3anc 1326 | 1 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∖ cdif 3571 𝒫 cpw 4158 {csn 4177 ↦ cmpt 4729 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 Basecbs 15857 .rcmulr 15942 Scalarcsca 15944 0gc0g 16100 invgcminusg 17423 Ringcrg 18547 Unitcui 18639 invrcinvr 18671 LModclmod 18863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-lmod 18865 |
This theorem is referenced by: lincresunit1 42266 lincresunit2 42267 lincresunit3lem1 42268 lincresunit3 42270 |
Copyright terms: Public domain | W3C validator |