MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmif1o Structured version   Visualization version   GIF version

Theorem lmif1o 25687
Description: The line mirroring function 𝑀 is a bijection. Theorem 10.9 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
Assertion
Ref Expression
lmif1o (𝜑𝑀:𝑃1-1-onto𝑃)

Proof of Theorem lmif1o
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ismid.p . . . 4 𝑃 = (Base‘𝐺)
2 ismid.d . . . 4 = (dist‘𝐺)
3 ismid.i . . . 4 𝐼 = (Itv‘𝐺)
4 ismid.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 ismid.1 . . . 4 (𝜑𝐺DimTarskiG≥2)
6 lmif.m . . . 4 𝑀 = ((lInvG‘𝐺)‘𝐷)
7 lmif.l . . . 4 𝐿 = (LineG‘𝐺)
8 lmif.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
91, 2, 3, 4, 5, 6, 7, 8lmif 25677 . . 3 (𝜑𝑀:𝑃𝑃)
10 ffn 6045 . . 3 (𝑀:𝑃𝑃𝑀 Fn 𝑃)
119, 10syl 17 . 2 (𝜑𝑀 Fn 𝑃)
124adantr 481 . . . . 5 ((𝜑𝑏𝑃) → 𝐺 ∈ TarskiG)
135adantr 481 . . . . 5 ((𝜑𝑏𝑃) → 𝐺DimTarskiG≥2)
148adantr 481 . . . . 5 ((𝜑𝑏𝑃) → 𝐷 ∈ ran 𝐿)
15 simpr 477 . . . . 5 ((𝜑𝑏𝑃) → 𝑏𝑃)
161, 2, 3, 12, 13, 6, 7, 14, 15lmilmi 25681 . . . 4 ((𝜑𝑏𝑃) → (𝑀‘(𝑀𝑏)) = 𝑏)
1716ralrimiva 2966 . . 3 (𝜑 → ∀𝑏𝑃 (𝑀‘(𝑀𝑏)) = 𝑏)
18 nvocnv 6537 . . 3 ((𝑀:𝑃𝑃 ∧ ∀𝑏𝑃 (𝑀‘(𝑀𝑏)) = 𝑏) → 𝑀 = 𝑀)
199, 17, 18syl2anc 693 . 2 (𝜑𝑀 = 𝑀)
20 nvof1o 6536 . 2 ((𝑀 Fn 𝑃𝑀 = 𝑀) → 𝑀:𝑃1-1-onto𝑃)
2111, 19, 20syl2anc 693 1 (𝜑𝑀:𝑃1-1-onto𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  ccnv 5113  ran crn 5115   Fn wfn 5883  wf 5884  1-1-ontowf1o 5887  cfv 5888  2c2 11070  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  DimTarskiGcstrkgld 25333  Itvcitv 25335  LineGclng 25336  lInvGclmi 25665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-mir 25548  df-rag 25589  df-perpg 25591  df-mid 25666  df-lmi 25667
This theorem is referenced by:  lmimot  25690
  Copyright terms: Public domain W3C validator