Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatfixedN Structured version   Visualization version   GIF version

Theorem lsatfixedN 34296
Description: Show equality with the span of the sum of two vectors, one of which (𝑋) is fixed in advance. Compare lspfixed 19128. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lsatfixed.v 𝑉 = (Base‘𝑊)
lsatfixed.p + = (+g𝑊)
lsatfixed.o 0 = (0g𝑊)
lsatfixed.n 𝑁 = (LSpan‘𝑊)
lsatfixed.a 𝐴 = (LSAtoms‘𝑊)
lsatfixed.w (𝜑𝑊 ∈ LVec)
lsatfixed.q (𝜑𝑄𝐴)
lsatfixed.x (𝜑𝑋𝑉)
lsatfixed.y (𝜑𝑌𝑉)
lsatfixed.e (𝜑𝑄 ≠ (𝑁‘{𝑋}))
lsatfixed.f (𝜑𝑄 ≠ (𝑁‘{𝑌}))
lsatfixed.g (𝜑𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
lsatfixedN (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
Distinct variable groups:   𝑧,𝑁   𝑧, 0   𝑧, +   𝜑,𝑧   𝑧,𝑄   𝑧,𝑉   𝑧,𝑊   𝑧,𝑋   𝑧,𝑌
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem lsatfixedN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lsatfixed.q . . 3 (𝜑𝑄𝐴)
2 lsatfixed.w . . . 4 (𝜑𝑊 ∈ LVec)
3 lsatfixed.v . . . . 5 𝑉 = (Base‘𝑊)
4 lsatfixed.n . . . . 5 𝑁 = (LSpan‘𝑊)
5 lsatfixed.o . . . . 5 0 = (0g𝑊)
6 lsatfixed.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 34278 . . . 4 (𝑊 ∈ LVec → (𝑄𝐴 ↔ ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤})))
82, 7syl 17 . . 3 (𝜑 → (𝑄𝐴 ↔ ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤})))
91, 8mpbid 222 . 2 (𝜑 → ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤}))
10 lsatfixed.p . . . . 5 + = (+g𝑊)
1123ad2ant1 1082 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑊 ∈ LVec)
12 simp2 1062 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤 ∈ (𝑉 ∖ { 0 }))
1312eldifad 3586 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤𝑉)
14 lsatfixed.x . . . . . 6 (𝜑𝑋𝑉)
15143ad2ant1 1082 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑋𝑉)
16 lsatfixed.y . . . . . 6 (𝜑𝑌𝑉)
17163ad2ant1 1082 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑌𝑉)
18 simp3 1063 . . . . . . . 8 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 = (𝑁‘{𝑤}))
1918eqcomd 2628 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) = 𝑄)
20 lsatfixed.e . . . . . . . 8 (𝜑𝑄 ≠ (𝑁‘{𝑋}))
21203ad2ant1 1082 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ≠ (𝑁‘{𝑋}))
2219, 21eqnetrd 2861 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
233, 5, 4, 11, 12, 15, 22lspsnne1 19117 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ¬ 𝑤 ∈ (𝑁‘{𝑋}))
24 lsatfixed.f . . . . . . . 8 (𝜑𝑄 ≠ (𝑁‘{𝑌}))
25243ad2ant1 1082 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ≠ (𝑁‘{𝑌}))
2619, 25eqnetrd 2861 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
273, 5, 4, 11, 12, 17, 26lspsnne1 19117 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ¬ 𝑤 ∈ (𝑁‘{𝑌}))
28 lsatfixed.g . . . . . . . 8 (𝜑𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
29283ad2ant1 1082 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
3019, 29eqsstrd 3639 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))
31 eqid 2622 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
32 lveclmod 19106 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
332, 32syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
34333ad2ant1 1082 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑊 ∈ LMod)
353, 31, 4, 33, 14, 16lspprcl 18978 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊))
36353ad2ant1 1082 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊))
373, 31, 4, 34, 36, 13lspsnel5 18995 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})))
3830, 37mpbird 247 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
393, 10, 5, 4, 11, 13, 15, 17, 23, 27, 38lspfixed 19128 . . . 4 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)}))
40 simpl1 1064 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝜑)
4140, 2syl 17 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑊 ∈ LVec)
42 simpl2 1065 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑤 ∈ (𝑉 ∖ { 0 }))
4340, 33syl 17 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑊 ∈ LMod)
4440, 14syl 17 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑋𝑉)
4516snssd 4340 . . . . . . . . . . . 12 (𝜑 → {𝑌} ⊆ 𝑉)
463, 4lspssv 18983 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ {𝑌} ⊆ 𝑉) → (𝑁‘{𝑌}) ⊆ 𝑉)
4733, 45, 46syl2anc 693 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉)
4847ssdifssd 3748 . . . . . . . . . 10 (𝜑 → ((𝑁‘{𝑌}) ∖ { 0 }) ⊆ 𝑉)
49483ad2ant1 1082 . . . . . . . . 9 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ((𝑁‘{𝑌}) ∖ { 0 }) ⊆ 𝑉)
5049sselda 3603 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑧𝑉)
513, 10lmodvacl 18877 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑧𝑉) → (𝑋 + 𝑧) ∈ 𝑉)
5243, 44, 50, 51syl3anc 1326 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑋 + 𝑧) ∈ 𝑉)
533, 5, 4, 41, 42, 52lspsncmp 19116 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → ((𝑁‘{𝑤}) ⊆ (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) = (𝑁‘{(𝑋 + 𝑧)})))
543, 31, 4lspsncl 18977 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑧) ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑧)}) ∈ (LSubSp‘𝑊))
5543, 52, 54syl2anc 693 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑁‘{(𝑋 + 𝑧)}) ∈ (LSubSp‘𝑊))
5642eldifad 3586 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑤𝑉)
573, 31, 4, 43, 55, 56lspsnel5 18995 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{(𝑋 + 𝑧)})))
58 simpl3 1066 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑄 = (𝑁‘{𝑤}))
5958eqeq1d 2624 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) = (𝑁‘{(𝑋 + 𝑧)})))
6053, 57, 593bitr4rd 301 . . . . 5 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ 𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)})))
6160rexbidva 3049 . . . 4 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)})))
6239, 61mpbird 247 . . 3 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
6362rexlimdv3a 3033 . 2 (𝜑 → (∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤}) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)})))
649, 63mpd 15 1 (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  cdif 3571  wss 3574  {csn 4177  {cpr 4179  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LVecclvec 19102  LSAtomsclsa 34261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263
This theorem is referenced by:  hdmaprnlem3eN  37150
  Copyright terms: Public domain W3C validator