Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatfixedN Structured version   Visualization version   Unicode version

Theorem lsatfixedN 34296
Description: Show equality with the span of the sum of two vectors, one of which ( X) is fixed in advance. Compare lspfixed 19128. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lsatfixed.v  |-  V  =  ( Base `  W
)
lsatfixed.p  |-  .+  =  ( +g  `  W )
lsatfixed.o  |-  .0.  =  ( 0g `  W )
lsatfixed.n  |-  N  =  ( LSpan `  W )
lsatfixed.a  |-  A  =  (LSAtoms `  W )
lsatfixed.w  |-  ( ph  ->  W  e.  LVec )
lsatfixed.q  |-  ( ph  ->  Q  e.  A )
lsatfixed.x  |-  ( ph  ->  X  e.  V )
lsatfixed.y  |-  ( ph  ->  Y  e.  V )
lsatfixed.e  |-  ( ph  ->  Q  =/=  ( N `
 { X }
) )
lsatfixed.f  |-  ( ph  ->  Q  =/=  ( N `
 { Y }
) )
lsatfixed.g  |-  ( ph  ->  Q  C_  ( N `  { X ,  Y } ) )
Assertion
Ref Expression
lsatfixedN  |-  ( ph  ->  E. z  e.  ( ( N `  { Y } )  \  {  .0.  } ) Q  =  ( N `  {
( X  .+  z
) } ) )
Distinct variable groups:    z, N    z,  .0.    z,  .+    ph, z    z, Q    z, V    z, W    z, X    z, Y
Allowed substitution hint:    A( z)

Proof of Theorem lsatfixedN
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lsatfixed.q . . 3  |-  ( ph  ->  Q  e.  A )
2 lsatfixed.w . . . 4  |-  ( ph  ->  W  e.  LVec )
3 lsatfixed.v . . . . 5  |-  V  =  ( Base `  W
)
4 lsatfixed.n . . . . 5  |-  N  =  ( LSpan `  W )
5 lsatfixed.o . . . . 5  |-  .0.  =  ( 0g `  W )
6 lsatfixed.a . . . . 5  |-  A  =  (LSAtoms `  W )
73, 4, 5, 6islsat 34278 . . . 4  |-  ( W  e.  LVec  ->  ( Q  e.  A  <->  E. w  e.  ( V  \  {  .0.  } ) Q  =  ( N `  {
w } ) ) )
82, 7syl 17 . . 3  |-  ( ph  ->  ( Q  e.  A  <->  E. w  e.  ( V 
\  {  .0.  }
) Q  =  ( N `  { w } ) ) )
91, 8mpbid 222 . 2  |-  ( ph  ->  E. w  e.  ( V  \  {  .0.  } ) Q  =  ( N `  { w } ) )
10 lsatfixed.p . . . . 5  |-  .+  =  ( +g  `  W )
1123ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  W  e.  LVec )
12 simp2 1062 . . . . . 6  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  w  e.  ( V  \  {  .0.  } ) )
1312eldifad 3586 . . . . 5  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  w  e.  V
)
14 lsatfixed.x . . . . . 6  |-  ( ph  ->  X  e.  V )
15143ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  X  e.  V
)
16 lsatfixed.y . . . . . 6  |-  ( ph  ->  Y  e.  V )
17163ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  Y  e.  V
)
18 simp3 1063 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  Q  =  ( N `  { w } ) )
1918eqcomd 2628 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  ( N `  { w } )  =  Q )
20 lsatfixed.e . . . . . . . 8  |-  ( ph  ->  Q  =/=  ( N `
 { X }
) )
21203ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  Q  =/=  ( N `  { X } ) )
2219, 21eqnetrd 2861 . . . . . 6  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  ( N `  { w } )  =/=  ( N `  { X } ) )
233, 5, 4, 11, 12, 15, 22lspsnne1 19117 . . . . 5  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  -.  w  e.  ( N `  { X } ) )
24 lsatfixed.f . . . . . . . 8  |-  ( ph  ->  Q  =/=  ( N `
 { Y }
) )
25243ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  Q  =/=  ( N `  { Y } ) )
2619, 25eqnetrd 2861 . . . . . 6  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  ( N `  { w } )  =/=  ( N `  { Y } ) )
273, 5, 4, 11, 12, 17, 26lspsnne1 19117 . . . . 5  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  -.  w  e.  ( N `  { Y } ) )
28 lsatfixed.g . . . . . . . 8  |-  ( ph  ->  Q  C_  ( N `  { X ,  Y } ) )
29283ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  Q  C_  ( N `  { X ,  Y } ) )
3019, 29eqsstrd 3639 . . . . . 6  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  ( N `  { w } ) 
C_  ( N `  { X ,  Y }
) )
31 eqid 2622 . . . . . . 7  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
32 lveclmod 19106 . . . . . . . . 9  |-  ( W  e.  LVec  ->  W  e. 
LMod )
332, 32syl 17 . . . . . . . 8  |-  ( ph  ->  W  e.  LMod )
34333ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  W  e.  LMod )
353, 31, 4, 33, 14, 16lspprcl 18978 . . . . . . . 8  |-  ( ph  ->  ( N `  { X ,  Y }
)  e.  ( LSubSp `  W ) )
36353ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  ( N `  { X ,  Y }
)  e.  ( LSubSp `  W ) )
373, 31, 4, 34, 36, 13lspsnel5 18995 . . . . . 6  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  ( w  e.  ( N `  { X ,  Y }
)  <->  ( N `  { w } ) 
C_  ( N `  { X ,  Y }
) ) )
3830, 37mpbird 247 . . . . 5  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  w  e.  ( N `  { X ,  Y } ) )
393, 10, 5, 4, 11, 13, 15, 17, 23, 27, 38lspfixed 19128 . . . 4  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  E. z  e.  ( ( N `  { Y } )  \  {  .0.  } ) w  e.  ( N `  {
( X  .+  z
) } ) )
40 simpl1 1064 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  { w } ) )  /\  z  e.  ( ( N `  { Y } )  \  {  .0.  } ) )  ->  ph )
4140, 2syl 17 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  { w } ) )  /\  z  e.  ( ( N `  { Y } )  \  {  .0.  } ) )  ->  W  e.  LVec )
42 simpl2 1065 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  { w } ) )  /\  z  e.  ( ( N `  { Y } )  \  {  .0.  } ) )  ->  w  e.  ( V  \  {  .0.  } ) )
4340, 33syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  { w } ) )  /\  z  e.  ( ( N `  { Y } )  \  {  .0.  } ) )  ->  W  e.  LMod )
4440, 14syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  { w } ) )  /\  z  e.  ( ( N `  { Y } )  \  {  .0.  } ) )  ->  X  e.  V
)
4516snssd 4340 . . . . . . . . . . . 12  |-  ( ph  ->  { Y }  C_  V )
463, 4lspssv 18983 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  { Y }  C_  V )  ->  ( N `  { Y } )  C_  V )
4733, 45, 46syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { Y } )  C_  V
)
4847ssdifssd 3748 . . . . . . . . . 10  |-  ( ph  ->  ( ( N `  { Y } )  \  {  .0.  } )  C_  V )
49483ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  ( ( N `
 { Y }
)  \  {  .0.  } )  C_  V )
5049sselda 3603 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  { w } ) )  /\  z  e.  ( ( N `  { Y } )  \  {  .0.  } ) )  ->  z  e.  V
)
513, 10lmodvacl 18877 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  z  e.  V )  ->  ( X  .+  z )  e.  V )
5243, 44, 50, 51syl3anc 1326 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  { w } ) )  /\  z  e.  ( ( N `  { Y } )  \  {  .0.  } ) )  ->  ( X  .+  z )  e.  V
)
533, 5, 4, 41, 42, 52lspsncmp 19116 . . . . . 6  |-  ( ( ( ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  { w } ) )  /\  z  e.  ( ( N `  { Y } )  \  {  .0.  } ) )  ->  ( ( N `
 { w }
)  C_  ( N `  { ( X  .+  z ) } )  <-> 
( N `  {
w } )  =  ( N `  {
( X  .+  z
) } ) ) )
543, 31, 4lspsncl 18977 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( X  .+  z )  e.  V )  ->  ( N `  { ( X  .+  z ) } )  e.  ( LSubSp `  W ) )
5543, 52, 54syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  { w } ) )  /\  z  e.  ( ( N `  { Y } )  \  {  .0.  } ) )  ->  ( N `  { ( X  .+  z ) } )  e.  ( LSubSp `  W
) )
5642eldifad 3586 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  { w } ) )  /\  z  e.  ( ( N `  { Y } )  \  {  .0.  } ) )  ->  w  e.  V
)
573, 31, 4, 43, 55, 56lspsnel5 18995 . . . . . 6  |-  ( ( ( ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  { w } ) )  /\  z  e.  ( ( N `  { Y } )  \  {  .0.  } ) )  ->  ( w  e.  ( N `  {
( X  .+  z
) } )  <->  ( N `  { w } ) 
C_  ( N `  { ( X  .+  z ) } ) ) )
58 simpl3 1066 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  { w } ) )  /\  z  e.  ( ( N `  { Y } )  \  {  .0.  } ) )  ->  Q  =  ( N `  { w } ) )
5958eqeq1d 2624 . . . . . 6  |-  ( ( ( ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  { w } ) )  /\  z  e.  ( ( N `  { Y } )  \  {  .0.  } ) )  ->  ( Q  =  ( N `  {
( X  .+  z
) } )  <->  ( N `  { w } )  =  ( N `  { ( X  .+  z ) } ) ) )
6053, 57, 593bitr4rd 301 . . . . 5  |-  ( ( ( ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  { w } ) )  /\  z  e.  ( ( N `  { Y } )  \  {  .0.  } ) )  ->  ( Q  =  ( N `  {
( X  .+  z
) } )  <->  w  e.  ( N `  { ( X  .+  z ) } ) ) )
6160rexbidva 3049 . . . 4  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  ( E. z  e.  ( ( N `  { Y } )  \  {  .0.  } ) Q  =  ( N `  { ( X  .+  z ) } )  <->  E. z  e.  (
( N `  { Y } )  \  {  .0.  } ) w  e.  ( N `  {
( X  .+  z
) } ) ) )
6239, 61mpbird 247 . . 3  |-  ( (
ph  /\  w  e.  ( V  \  {  .0.  } )  /\  Q  =  ( N `  {
w } ) )  ->  E. z  e.  ( ( N `  { Y } )  \  {  .0.  } ) Q  =  ( N `  {
( X  .+  z
) } ) )
6362rexlimdv3a 3033 . 2  |-  ( ph  ->  ( E. w  e.  ( V  \  {  .0.  } ) Q  =  ( N `  {
w } )  ->  E. z  e.  (
( N `  { Y } )  \  {  .0.  } ) Q  =  ( N `  {
( X  .+  z
) } ) ) )
649, 63mpd 15 1  |-  ( ph  ->  E. z  e.  ( ( N `  { Y } )  \  {  .0.  } ) Q  =  ( N `  {
( X  .+  z
) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   LVecclvec 19102  LSAtomsclsa 34261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263
This theorem is referenced by:  hdmaprnlem3eN  37150
  Copyright terms: Public domain W3C validator