![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkrcl | Structured version Visualization version GIF version |
Description: The set 𝐺 defined by hyperplane 𝑈 is a linear functional. (Contributed by NM, 17-Jul-2014.) |
Ref | Expression |
---|---|
lshpkr.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpkr.a | ⊢ + = (+g‘𝑊) |
lshpkr.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lshpkr.p | ⊢ ⊕ = (LSSum‘𝑊) |
lshpkr.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpkr.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lshpkr.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
lshpkr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
lshpkr.e | ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
lshpkr.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lshpkr.k | ⊢ 𝐾 = (Base‘𝐷) |
lshpkr.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lshpkr.g | ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) |
lshpkr.f | ⊢ 𝐹 = (LFnl‘𝑊) |
Ref | Expression |
---|---|
lshpkrcl | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpkr.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lshpkr.a | . . . . 5 ⊢ + = (+g‘𝑊) | |
3 | lshpkr.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | lshpkr.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝑊) | |
5 | lshpkr.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
6 | lshpkr.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑊 ∈ LVec) |
8 | lshpkr.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑈 ∈ 𝐻) |
10 | lshpkr.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
11 | 10 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑍 ∈ 𝑉) |
12 | simpr 477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
13 | lshpkr.e | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) | |
14 | 13 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
15 | lshpkr.d | . . . . 5 ⊢ 𝐷 = (Scalar‘𝑊) | |
16 | lshpkr.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐷) | |
17 | lshpkr.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
18 | 1, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17 | lshpsmreu 34396 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) |
19 | riotacl 6625 | . . . 4 ⊢ (∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)) → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾) |
21 | lshpkr.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) | |
22 | eqeq1 2626 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑎 = (𝑦 + (𝑘 · 𝑍)))) | |
23 | 22 | rexbidv 3052 | . . . . . 6 ⊢ (𝑥 = 𝑎 → (∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))) |
24 | 23 | riotabidv 6613 | . . . . 5 ⊢ (𝑥 = 𝑎 → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))) |
25 | 24 | cbvmptv 4750 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑎 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))) |
26 | 21, 25 | eqtri 2644 | . . 3 ⊢ 𝐺 = (𝑎 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))) |
27 | 20, 26 | fmptd 6385 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
28 | eqid 2622 | . . . 4 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
29 | 1, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 28, 21 | lshpkrlem6 34402 | . . 3 ⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) |
30 | 29 | ralrimivvva 2972 | . 2 ⊢ (𝜑 → ∀𝑙 ∈ 𝐾 ∀𝑢 ∈ 𝑉 ∀𝑣 ∈ 𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) |
31 | eqid 2622 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
32 | eqid 2622 | . . . 4 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
33 | lshpkr.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
34 | 1, 2, 15, 17, 16, 31, 32, 33 | islfl 34347 | . . 3 ⊢ (𝑊 ∈ LVec → (𝐺 ∈ 𝐹 ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑙 ∈ 𝐾 ∀𝑢 ∈ 𝑉 ∀𝑣 ∈ 𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))))) |
35 | 6, 34 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 ∈ 𝐹 ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑙 ∈ 𝐾 ∀𝑢 ∈ 𝑉 ∀𝑣 ∈ 𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))))) |
36 | 27, 30, 35 | mpbir2and 957 | 1 ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ∃!wreu 2914 {csn 4177 ↦ cmpt 4729 ⟶wf 5884 ‘cfv 5888 ℩crio 6610 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 .rcmulr 15942 Scalarcsca 15944 ·𝑠 cvsca 15945 0gc0g 16100 LSSumclsm 18049 LSpanclspn 18971 LVecclvec 19102 LSHypclsh 34262 LFnlclfn 34344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lshyp 34264 df-lfl 34345 |
This theorem is referenced by: lshpkr 34404 lshpkrex 34405 dochflcl 36764 |
Copyright terms: Public domain | W3C validator |