![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmdisj2r | Structured version Visualization version GIF version |
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
Ref | Expression |
---|---|
lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
lsmdisjr.i | ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) |
lsmdisj2r.i | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
Ref | Expression |
---|---|
lsmdisj2r | ⊢ (𝜑 → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . . 5 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
2 | lsmcntz.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
3 | 1, 2 | oppglsm 18057 | . . . 4 ⊢ (𝑈(LSSum‘(oppg‘𝐺))𝑆) = (𝑆 ⊕ 𝑈) |
4 | 3 | ineq2i 3811 | . . 3 ⊢ (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = (𝑇 ∩ (𝑆 ⊕ 𝑈)) |
5 | incom 3805 | . . 3 ⊢ (𝑇 ∩ (𝑆 ⊕ 𝑈)) = ((𝑆 ⊕ 𝑈) ∩ 𝑇) | |
6 | 4, 5 | eqtri 2644 | . 2 ⊢ (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = ((𝑆 ⊕ 𝑈) ∩ 𝑇) |
7 | eqid 2622 | . . 3 ⊢ (LSSum‘(oppg‘𝐺)) = (LSSum‘(oppg‘𝐺)) | |
8 | lsmcntz.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
9 | 1 | oppgsubg 17793 | . . . 4 ⊢ (SubGrp‘𝐺) = (SubGrp‘(oppg‘𝐺)) |
10 | 8, 9 | syl6eleq 2711 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘(oppg‘𝐺))) |
11 | lsmcntz.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
12 | 11, 9 | syl6eleq 2711 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘(oppg‘𝐺))) |
13 | lsmcntz.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
14 | 13, 9 | syl6eleq 2711 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘(oppg‘𝐺))) |
15 | lsmdisj.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
16 | 1, 15 | oppgid 17786 | . . 3 ⊢ 0 = (0g‘(oppg‘𝐺)) |
17 | 1, 2 | oppglsm 18057 | . . . . . 6 ⊢ (𝑈(LSSum‘(oppg‘𝐺))𝑇) = (𝑇 ⊕ 𝑈) |
18 | 17 | ineq1i 3810 | . . . . 5 ⊢ ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = ((𝑇 ⊕ 𝑈) ∩ 𝑆) |
19 | incom 3805 | . . . . 5 ⊢ ((𝑇 ⊕ 𝑈) ∩ 𝑆) = (𝑆 ∩ (𝑇 ⊕ 𝑈)) | |
20 | 18, 19 | eqtri 2644 | . . . 4 ⊢ ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑇 ⊕ 𝑈)) |
21 | lsmdisjr.i | . . . 4 ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) | |
22 | 20, 21 | syl5eq 2668 | . . 3 ⊢ (𝜑 → ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = { 0 }) |
23 | incom 3805 | . . . 4 ⊢ (𝑇 ∩ 𝑈) = (𝑈 ∩ 𝑇) | |
24 | lsmdisj2r.i | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
25 | 23, 24 | syl5eqr 2670 | . . 3 ⊢ (𝜑 → (𝑈 ∩ 𝑇) = { 0 }) |
26 | 7, 10, 12, 14, 16, 22, 25 | lsmdisj2 18095 | . 2 ⊢ (𝜑 → (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = { 0 }) |
27 | 6, 26 | syl5eqr 2670 | 1 ⊢ (𝜑 → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∩ cin 3573 {csn 4177 ‘cfv 5888 (class class class)co 6650 0gc0g 16100 SubGrpcsubg 17588 oppgcoppg 17775 LSSumclsm 18049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-subg 17591 df-oppg 17776 df-lsm 18051 |
This theorem is referenced by: lsmdisj3r 18099 lsmdisj2b 18101 |
Copyright terms: Public domain | W3C validator |