![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppgsubg | Structured version Visualization version GIF version |
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.) |
Ref | Expression |
---|---|
oppggic.o | ⊢ 𝑂 = (oppg‘𝐺) |
Ref | Expression |
---|---|
oppgsubg | ⊢ (SubGrp‘𝐺) = (SubGrp‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrcl 17599 | . . 3 ⊢ (𝑥 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
2 | subgrcl 17599 | . . . 4 ⊢ (𝑥 ∈ (SubGrp‘𝑂) → 𝑂 ∈ Grp) | |
3 | oppggic.o | . . . . 5 ⊢ 𝑂 = (oppg‘𝐺) | |
4 | 3 | oppggrpb 17788 | . . . 4 ⊢ (𝐺 ∈ Grp ↔ 𝑂 ∈ Grp) |
5 | 2, 4 | sylibr 224 | . . 3 ⊢ (𝑥 ∈ (SubGrp‘𝑂) → 𝐺 ∈ Grp) |
6 | 3 | oppgsubm 17792 | . . . . . . 7 ⊢ (SubMnd‘𝐺) = (SubMnd‘𝑂) |
7 | 6 | eleq2i 2693 | . . . . . 6 ⊢ (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂)) |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂))) |
9 | eqid 2622 | . . . . . . . . 9 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
10 | 3, 9 | oppginv 17789 | . . . . . . . 8 ⊢ (𝐺 ∈ Grp → (invg‘𝐺) = (invg‘𝑂)) |
11 | 10 | fveq1d 6193 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘𝑦) = ((invg‘𝑂)‘𝑦)) |
12 | 11 | eleq1d 2686 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (((invg‘𝐺)‘𝑦) ∈ 𝑥 ↔ ((invg‘𝑂)‘𝑦) ∈ 𝑥)) |
13 | 12 | ralbidv 2986 | . . . . 5 ⊢ (𝐺 ∈ Grp → (∀𝑦 ∈ 𝑥 ((invg‘𝐺)‘𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ((invg‘𝑂)‘𝑦) ∈ 𝑥)) |
14 | 8, 13 | anbi12d 747 | . . . 4 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ (SubMnd‘𝐺) ∧ ∀𝑦 ∈ 𝑥 ((invg‘𝐺)‘𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubMnd‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ((invg‘𝑂)‘𝑦) ∈ 𝑥))) |
15 | 9 | issubg3 17612 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑥 ∈ (SubGrp‘𝐺) ↔ (𝑥 ∈ (SubMnd‘𝐺) ∧ ∀𝑦 ∈ 𝑥 ((invg‘𝐺)‘𝑦) ∈ 𝑥))) |
16 | eqid 2622 | . . . . . 6 ⊢ (invg‘𝑂) = (invg‘𝑂) | |
17 | 16 | issubg3 17612 | . . . . 5 ⊢ (𝑂 ∈ Grp → (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑥 ∈ (SubMnd‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ((invg‘𝑂)‘𝑦) ∈ 𝑥))) |
18 | 4, 17 | sylbi 207 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑥 ∈ (SubMnd‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ((invg‘𝑂)‘𝑦) ∈ 𝑥))) |
19 | 14, 15, 18 | 3bitr4d 300 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑥 ∈ (SubGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝑂))) |
20 | 1, 5, 19 | pm5.21nii 368 | . 2 ⊢ (𝑥 ∈ (SubGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝑂)) |
21 | 20 | eqriv 2619 | 1 ⊢ (SubGrp‘𝐺) = (SubGrp‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ‘cfv 5888 SubMndcsubmnd 17334 Grpcgrp 17422 invgcminusg 17423 SubGrpcsubg 17588 oppgcoppg 17775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-subg 17591 df-oppg 17776 |
This theorem is referenced by: lsmmod2 18089 lsmdisj2r 18098 |
Copyright terms: Public domain | W3C validator |