MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspdisj2 Structured version   Visualization version   GIF version

Theorem lspdisj2 19127
Description: Unequal spans are disjoint (share only the zero vector). (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
lspdisj2.v 𝑉 = (Base‘𝑊)
lspdisj2.o 0 = (0g𝑊)
lspdisj2.n 𝑁 = (LSpan‘𝑊)
lspdisj2.w (𝜑𝑊 ∈ LVec)
lspdisj2.x (𝜑𝑋𝑉)
lspdisj2.y (𝜑𝑌𝑉)
lspdisj2.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lspdisj2 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })

Proof of Theorem lspdisj2
StepHypRef Expression
1 sneq 4187 . . . . . 6 (𝑋 = 0 → {𝑋} = { 0 })
21fveq2d 6195 . . . . 5 (𝑋 = 0 → (𝑁‘{𝑋}) = (𝑁‘{ 0 }))
3 lspdisj2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
4 lveclmod 19106 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
6 lspdisj2.o . . . . . . 7 0 = (0g𝑊)
7 lspdisj2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
86, 7lspsn0 19008 . . . . . 6 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
95, 8syl 17 . . . . 5 (𝜑 → (𝑁‘{ 0 }) = { 0 })
102, 9sylan9eqr 2678 . . . 4 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 })
1110ineq1d 3813 . . 3 ((𝜑𝑋 = 0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = ({ 0 } ∩ (𝑁‘{𝑌})))
12 lspdisj2.y . . . . . . 7 (𝜑𝑌𝑉)
13 lspdisj2.v . . . . . . . 8 𝑉 = (Base‘𝑊)
14 eqid 2622 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1513, 14, 7lspsncl 18977 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
165, 12, 15syl2anc 693 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
176, 14lss0ss 18949 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑁‘{𝑌}))
185, 16, 17syl2anc 693 . . . . 5 (𝜑 → { 0 } ⊆ (𝑁‘{𝑌}))
19 df-ss 3588 . . . . 5 ({ 0 } ⊆ (𝑁‘{𝑌}) ↔ ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2018, 19sylib 208 . . . 4 (𝜑 → ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2120adantr 481 . . 3 ((𝜑𝑋 = 0 ) → ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2211, 21eqtrd 2656 . 2 ((𝜑𝑋 = 0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
233adantr 481 . . 3 ((𝜑𝑋0 ) → 𝑊 ∈ LVec)
2416adantr 481 . . 3 ((𝜑𝑋0 ) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
25 lspdisj2.x . . . 4 (𝜑𝑋𝑉)
2625adantr 481 . . 3 ((𝜑𝑋0 ) → 𝑋𝑉)
27 lspdisj2.q . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2827adantr 481 . . . 4 ((𝜑𝑋0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2923adantr 481 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑊 ∈ LVec)
3012adantr 481 . . . . . . . 8 ((𝜑𝑋0 ) → 𝑌𝑉)
3130adantr 481 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑌𝑉)
32 simpr 477 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑌}))
33 simplr 792 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑋0 )
3413, 6, 7, 29, 31, 32, 33lspsneleq 19115 . . . . . 6 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3534ex 450 . . . . 5 ((𝜑𝑋0 ) → (𝑋 ∈ (𝑁‘{𝑌}) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
3635necon3ad 2807 . . . 4 ((𝜑𝑋0 ) → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → ¬ 𝑋 ∈ (𝑁‘{𝑌})))
3728, 36mpd 15 . . 3 ((𝜑𝑋0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
3813, 6, 7, 14, 23, 24, 26, 37lspdisj 19125 . 2 ((𝜑𝑋0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
3922, 38pm2.61dane 2881 1 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cin 3573  wss 3574  {csn 4177  cfv 5888  Basecbs 15857  0gc0g 16100  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103
This theorem is referenced by:  lvecindp2  19139  hdmaprnlem9N  37149
  Copyright terms: Public domain W3C validator