MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss1d Structured version   Visualization version   GIF version

Theorem lss1d 18963
Description: One-dimensional subspace (or zero-dimensional if 𝑋 is the zero vector). (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss1d.v 𝑉 = (Base‘𝑊)
lss1d.f 𝐹 = (Scalar‘𝑊)
lss1d.t · = ( ·𝑠𝑊)
lss1d.k 𝐾 = (Base‘𝐹)
lss1d.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lss1d ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∈ 𝑆)
Distinct variable groups:   𝑣,𝑘,𝐾   · ,𝑘,𝑣   𝑘,𝑉,𝑣   𝑘,𝐹   𝑘,𝑊,𝑣   𝑘,𝑋,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑘)   𝐹(𝑣)

Proof of Theorem lss1d
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lss1d.f . . 3 𝐹 = (Scalar‘𝑊)
21a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐹 = (Scalar‘𝑊))
3 lss1d.k . . 3 𝐾 = (Base‘𝐹)
43a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐾 = (Base‘𝐹))
5 lss1d.v . . 3 𝑉 = (Base‘𝑊)
65a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑉 = (Base‘𝑊))
7 eqidd 2623 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (+g𝑊) = (+g𝑊))
8 lss1d.t . . 3 · = ( ·𝑠𝑊)
98a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → · = ( ·𝑠𝑊))
10 lss1d.s . . 3 𝑆 = (LSubSp‘𝑊)
1110a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑆 = (LSubSp‘𝑊))
125, 1, 8, 3lmodvscl 18880 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑘𝐾𝑋𝑉) → (𝑘 · 𝑋) ∈ 𝑉)
13123expa 1265 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑘𝐾) ∧ 𝑋𝑉) → (𝑘 · 𝑋) ∈ 𝑉)
1413an32s 846 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑘 · 𝑋) ∈ 𝑉)
15 eleq1a 2696 . . . . 5 ((𝑘 · 𝑋) ∈ 𝑉 → (𝑣 = (𝑘 · 𝑋) → 𝑣𝑉))
1614, 15syl 17 . . . 4 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑣 = (𝑘 · 𝑋) → 𝑣𝑉))
1716rexlimdva 3031 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) → 𝑣𝑉))
1817abssdv 3676 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ⊆ 𝑉)
19 eqid 2622 . . . . 5 (0g𝐹) = (0g𝐹)
201, 3, 19lmod0cl 18889 . . . 4 (𝑊 ∈ LMod → (0g𝐹) ∈ 𝐾)
2120adantr 481 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (0g𝐹) ∈ 𝐾)
22 nfcv 2764 . . . 4 𝑘(0g𝐹)
23 nfre1 3005 . . . . . 6 𝑘𝑘𝐾 𝑣 = (𝑘 · 𝑋)
2423nfab 2769 . . . . 5 𝑘{𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)}
25 nfcv 2764 . . . . 5 𝑘
2624, 25nfne 2894 . . . 4 𝑘{𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅
27 biidd 252 . . . 4 (𝑘 = (0g𝐹) → ({𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅ ↔ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅))
28 ovex 6678 . . . . . 6 (𝑘 · 𝑋) ∈ V
2928elabrex 6501 . . . . 5 (𝑘𝐾 → (𝑘 · 𝑋) ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
30 ne0i 3921 . . . . 5 ((𝑘 · 𝑋) ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅)
3129, 30syl 17 . . . 4 (𝑘𝐾 → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅)
3222, 26, 27, 31vtoclgaf 3271 . . 3 ((0g𝐹) ∈ 𝐾 → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅)
3321, 32syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅)
34 vex 3203 . . . . . . . . . . 11 𝑎 ∈ V
35 eqeq1 2626 . . . . . . . . . . . 12 (𝑣 = 𝑎 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑎 = (𝑘 · 𝑋)))
3635rexbidv 3052 . . . . . . . . . . 11 (𝑣 = 𝑎 → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 𝑎 = (𝑘 · 𝑋)))
3734, 36elab 3350 . . . . . . . . . 10 (𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑎 = (𝑘 · 𝑋))
38 oveq1 6657 . . . . . . . . . . . 12 (𝑘 = 𝑦 → (𝑘 · 𝑋) = (𝑦 · 𝑋))
3938eqeq2d 2632 . . . . . . . . . . 11 (𝑘 = 𝑦 → (𝑎 = (𝑘 · 𝑋) ↔ 𝑎 = (𝑦 · 𝑋)))
4039cbvrexv 3172 . . . . . . . . . 10 (∃𝑘𝐾 𝑎 = (𝑘 · 𝑋) ↔ ∃𝑦𝐾 𝑎 = (𝑦 · 𝑋))
4137, 40bitri 264 . . . . . . . . 9 (𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑦𝐾 𝑎 = (𝑦 · 𝑋))
42 vex 3203 . . . . . . . . . . 11 𝑏 ∈ V
43 eqeq1 2626 . . . . . . . . . . . 12 (𝑣 = 𝑏 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑏 = (𝑘 · 𝑋)))
4443rexbidv 3052 . . . . . . . . . . 11 (𝑣 = 𝑏 → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 𝑏 = (𝑘 · 𝑋)))
4542, 44elab 3350 . . . . . . . . . 10 (𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑏 = (𝑘 · 𝑋))
46 oveq1 6657 . . . . . . . . . . . 12 (𝑘 = 𝑧 → (𝑘 · 𝑋) = (𝑧 · 𝑋))
4746eqeq2d 2632 . . . . . . . . . . 11 (𝑘 = 𝑧 → (𝑏 = (𝑘 · 𝑋) ↔ 𝑏 = (𝑧 · 𝑋)))
4847cbvrexv 3172 . . . . . . . . . 10 (∃𝑘𝐾 𝑏 = (𝑘 · 𝑋) ↔ ∃𝑧𝐾 𝑏 = (𝑧 · 𝑋))
4945, 48bitri 264 . . . . . . . . 9 (𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑧𝐾 𝑏 = (𝑧 · 𝑋))
5041, 49anbi12i 733 . . . . . . . 8 ((𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)}) ↔ (∃𝑦𝐾 𝑎 = (𝑦 · 𝑋) ∧ ∃𝑧𝐾 𝑏 = (𝑧 · 𝑋)))
51 reeanv 3107 . . . . . . . 8 (∃𝑦𝐾𝑧𝐾 (𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) ↔ (∃𝑦𝐾 𝑎 = (𝑦 · 𝑋) ∧ ∃𝑧𝐾 𝑏 = (𝑧 · 𝑋)))
5250, 51bitr4i 267 . . . . . . 7 ((𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)}) ↔ ∃𝑦𝐾𝑧𝐾 (𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)))
53 simpll 790 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑊 ∈ LMod)
54 simprr 796 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑥𝐾)
55 simprll 802 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑦𝐾)
56 eqid 2622 . . . . . . . . . . . . . . 15 (.r𝐹) = (.r𝐹)
571, 3, 56lmodmcl 18875 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝑥𝐾𝑦𝐾) → (𝑥(.r𝐹)𝑦) ∈ 𝐾)
5853, 54, 55, 57syl3anc 1326 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → (𝑥(.r𝐹)𝑦) ∈ 𝐾)
59 simprlr 803 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑧𝐾)
60 eqid 2622 . . . . . . . . . . . . . 14 (+g𝐹) = (+g𝐹)
611, 3, 60lmodacl 18874 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ (𝑥(.r𝐹)𝑦) ∈ 𝐾𝑧𝐾) → ((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) ∈ 𝐾)
6253, 58, 59, 61syl3anc 1326 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) ∈ 𝐾)
63 simplr 792 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑋𝑉)
64 eqid 2622 . . . . . . . . . . . . . . 15 (+g𝑊) = (+g𝑊)
655, 64, 1, 8, 3, 60lmodvsdir 18887 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ ((𝑥(.r𝐹)𝑦) ∈ 𝐾𝑧𝐾𝑋𝑉)) → (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋) = (((𝑥(.r𝐹)𝑦) · 𝑋)(+g𝑊)(𝑧 · 𝑋)))
6653, 58, 59, 63, 65syl13anc 1328 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋) = (((𝑥(.r𝐹)𝑦) · 𝑋)(+g𝑊)(𝑧 · 𝑋)))
675, 1, 8, 3, 56lmodvsass 18888 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ (𝑥𝐾𝑦𝐾𝑋𝑉)) → ((𝑥(.r𝐹)𝑦) · 𝑋) = (𝑥 · (𝑦 · 𝑋)))
6853, 54, 55, 63, 67syl13anc 1328 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ((𝑥(.r𝐹)𝑦) · 𝑋) = (𝑥 · (𝑦 · 𝑋)))
6968oveq1d 6665 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → (((𝑥(.r𝐹)𝑦) · 𝑋)(+g𝑊)(𝑧 · 𝑋)) = ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)))
7066, 69eqtr2d 2657 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋))
71 oveq1 6657 . . . . . . . . . . . . . 14 (𝑘 = ((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) → (𝑘 · 𝑋) = (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋))
7271eqeq2d 2632 . . . . . . . . . . . . 13 (𝑘 = ((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) → (((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (𝑘 · 𝑋) ↔ ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋)))
7372rspcev 3309 . . . . . . . . . . . 12 ((((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) ∈ 𝐾 ∧ ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋)) → ∃𝑘𝐾 ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (𝑘 · 𝑋))
7462, 70, 73syl2anc 693 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ∃𝑘𝐾 ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (𝑘 · 𝑋))
75 oveq2 6658 . . . . . . . . . . . . . 14 (𝑎 = (𝑦 · 𝑋) → (𝑥 · 𝑎) = (𝑥 · (𝑦 · 𝑋)))
76 oveq12 6659 . . . . . . . . . . . . . 14 (((𝑥 · 𝑎) = (𝑥 · (𝑦 · 𝑋)) ∧ 𝑏 = (𝑧 · 𝑋)) → ((𝑥 · 𝑎)(+g𝑊)𝑏) = ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)))
7775, 76sylan 488 . . . . . . . . . . . . 13 ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → ((𝑥 · 𝑎)(+g𝑊)𝑏) = ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)))
7877eqeq1d 2624 . . . . . . . . . . . 12 ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → (((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋) ↔ ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (𝑘 · 𝑋)))
7978rexbidv 3052 . . . . . . . . . . 11 ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → (∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (𝑘 · 𝑋)))
8074, 79syl5ibrcom 237 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))
8180expr 643 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ (𝑦𝐾𝑧𝐾)) → (𝑥𝐾 → ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))))
8281com23 86 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → (𝑥𝐾 → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))))
8382rexlimdvva 3038 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (∃𝑦𝐾𝑧𝐾 (𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → (𝑥𝐾 → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))))
8452, 83syl5bi 232 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)}) → (𝑥𝐾 → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))))
8584expcomd 454 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} → (𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} → (𝑥𝐾 → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))))
8685com24 95 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑥𝐾 → (𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} → (𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))))
87863imp2 1282 . . 3 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ (𝑥𝐾𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})) → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))
88 ovex 6678 . . . 4 ((𝑥 · 𝑎)(+g𝑊)𝑏) ∈ V
89 eqeq1 2626 . . . . 5 (𝑣 = ((𝑥 · 𝑎)(+g𝑊)𝑏) → (𝑣 = (𝑘 · 𝑋) ↔ ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))
9089rexbidv 3052 . . . 4 (𝑣 = ((𝑥 · 𝑎)(+g𝑊)𝑏) → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))
9188, 90elab 3350 . . 3 (((𝑥 · 𝑎)(+g𝑊)𝑏) ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))
9287, 91sylibr 224 . 2 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ (𝑥𝐾𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})) → ((𝑥 · 𝑎)(+g𝑊)𝑏) ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
932, 4, 6, 7, 9, 11, 18, 33, 92islssd 18936 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wrex 2913  c0 3915  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  LModclmod 18863  LSubSpclss 18932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ring 18549  df-lmod 18865  df-lss 18933
This theorem is referenced by:  lspsn  19002
  Copyright terms: Public domain W3C validator