MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnpi3 Structured version   Visualization version   GIF version

Theorem metcnpi3 22351
Description: Epsilon-delta property of a metric space function continuous at 𝑃. A variation of metcnpi2 22350 with non-strict ordering. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcnpi3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐴,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑃,𝑦

Proof of Theorem metcnpi3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . 3 𝐽 = (MetOpen‘𝐶)
2 metcn.4 . . 3 𝐾 = (MetOpen‘𝐷)
31, 2metcnpi2 22350 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))
4 rphalfcl 11858 . . . 4 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
54ad2antrl 764 . . 3 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+ ∧ ∀𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))) → (𝑧 / 2) ∈ ℝ+)
6 simplll 798 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐶 ∈ (∞Met‘𝑋))
7 simprr 796 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑦𝑋)
8 simplrl 800 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
9 eqid 2622 . . . . . . . . . . . 12 𝐽 = 𝐽
109cnprcl 21049 . . . . . . . . . . 11 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 𝐽)
118, 10syl 17 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑃 𝐽)
121mopnuni 22246 . . . . . . . . . . 11 (𝐶 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
136, 12syl 17 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑋 = 𝐽)
1411, 13eleqtrrd 2704 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑃𝑋)
15 xmetcl 22136 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑃𝑋) → (𝑦𝐶𝑃) ∈ ℝ*)
166, 7, 14, 15syl3anc 1326 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝑦𝐶𝑃) ∈ ℝ*)
174ad2antrl 764 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝑧 / 2) ∈ ℝ+)
1817rpxrd 11873 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝑧 / 2) ∈ ℝ*)
19 rpxr 11840 . . . . . . . . 9 (𝑧 ∈ ℝ+𝑧 ∈ ℝ*)
2019ad2antrl 764 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝑧 ∈ ℝ*)
21 rphalflt 11860 . . . . . . . . 9 (𝑧 ∈ ℝ+ → (𝑧 / 2) < 𝑧)
2221ad2antrl 764 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝑧 / 2) < 𝑧)
23 xrlelttr 11987 . . . . . . . . . 10 (((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*𝑧 ∈ ℝ*) → (((𝑦𝐶𝑃) ≤ (𝑧 / 2) ∧ (𝑧 / 2) < 𝑧) → (𝑦𝐶𝑃) < 𝑧))
2423expcomd 454 . . . . . . . . 9 (((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑧 / 2) < 𝑧 → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧)))
2524imp 445 . . . . . . . 8 ((((𝑦𝐶𝑃) ∈ ℝ* ∧ (𝑧 / 2) ∈ ℝ*𝑧 ∈ ℝ*) ∧ (𝑧 / 2) < 𝑧) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧))
2616, 18, 20, 22, 25syl31anc 1329 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → (𝑦𝐶𝑃) < 𝑧))
27 simpllr 799 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐷 ∈ (∞Met‘𝑌))
281mopntopon 22244 . . . . . . . . . . . 12 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
296, 28syl 17 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
302mopntopon 22244 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
3127, 30syl 17 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐾 ∈ (TopOn‘𝑌))
32 cnpf2 21054 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
3329, 31, 8, 32syl3anc 1326 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐹:𝑋𝑌)
3433, 7ffvelrnd 6360 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝐹𝑦) ∈ 𝑌)
3533, 14ffvelrnd 6360 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (𝐹𝑃) ∈ 𝑌)
36 xmetcl 22136 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑃) ∈ 𝑌) → ((𝐹𝑦)𝐷(𝐹𝑃)) ∈ ℝ*)
3727, 34, 35, 36syl3anc 1326 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → ((𝐹𝑦)𝐷(𝐹𝑃)) ∈ ℝ*)
38 simplrr 801 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐴 ∈ ℝ+)
3938rpxrd 11873 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → 𝐴 ∈ ℝ*)
40 xrltle 11982 . . . . . . . 8 ((((𝐹𝑦)𝐷(𝐹𝑃)) ∈ ℝ*𝐴 ∈ ℝ*) → (((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
4137, 39, 40syl2anc 693 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
4226, 41imim12d 81 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+𝑦𝑋)) → (((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)))
4342anassrs 680 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦𝑋) → (((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴) → ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)))
4443ralimdva 2962 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+) → (∀𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴) → ∀𝑦𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)))
4544impr 649 . . 3 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+ ∧ ∀𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))) → ∀𝑦𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
46 breq2 4657 . . . . . 6 (𝑥 = (𝑧 / 2) → ((𝑦𝐶𝑃) ≤ 𝑥 ↔ (𝑦𝐶𝑃) ≤ (𝑧 / 2)))
4746imbi1d 331 . . . . 5 (𝑥 = (𝑧 / 2) → (((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴) ↔ ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)))
4847ralbidv 2986 . . . 4 (𝑥 = (𝑧 / 2) → (∀𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴) ↔ ∀𝑦𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)))
4948rspcev 3309 . . 3 (((𝑧 / 2) ∈ ℝ+ ∧ ∀𝑦𝑋 ((𝑦𝐶𝑃) ≤ (𝑧 / 2) → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
505, 45, 49syl2anc 693 . 2 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) ∧ (𝑧 ∈ ℝ+ ∧ ∀𝑦𝑋 ((𝑦𝐶𝑃) < 𝑧 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
513, 50rexlimddv 3035 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913   cuni 4436   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  *cxr 10073   < clt 10074  cle 10075   / cdiv 10684  2c2 11070  +crp 11832  ∞Metcxmt 19731  MetOpencmopn 19736  TopOnctopon 20715   CnP ccnp 21029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cnp 21032
This theorem is referenced by:  blocnilem  27659
  Copyright terms: Public domain W3C validator