MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgcddvds Structured version   Visualization version   GIF version

Theorem mulgcddvds 15369
Description: One half of rpmulgcd2 15370, which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
mulgcddvds ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))

Proof of Theorem mulgcddvds
StepHypRef Expression
1 simp1 1061 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
2 simp2 1062 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
3 simp3 1063 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
42, 3zmulcld 11488 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
51, 4gcdcld 15230 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0)
65nn0zd 11480 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ)
7 dvds0 14997 . . . . 5 ((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
86, 7syl 17 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
98adantr 481 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
10 oveq2 6658 . . . 4 ((𝐾 gcd 𝑁) = 0 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) = ((𝐾 gcd 𝑀) · 0))
111, 2gcdcld 15230 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℕ0)
1211nn0cnd 11353 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℂ)
1312mul01d 10235 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) · 0) = 0)
1410, 13sylan9eqr 2678 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) = 0)
159, 14breqtrrd 4681 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
166adantr 481 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ)
1716zcnd 11483 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℂ)
181, 3gcdcld 15230 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℕ0)
1918nn0zd 11480 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℤ)
2019adantr 481 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∈ ℤ)
2120zcnd 11483 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∈ ℂ)
22 simpr 477 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ≠ 0)
2317, 21, 22divcan1d 10802 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) = (𝐾 gcd (𝑀 · 𝑁)))
24 gcddvds 15225 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁)))
251, 4, 24syl2anc 693 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁)))
2625simpld 475 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾)
27 dvdsmultr1 15019 . . . . . . . . . 10 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁))))
286, 1, 19, 27syl3anc 1326 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁))))
2926, 28mpd 15 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
3029adantr 481 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
3123, 30eqbrtrd 4675 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
32 gcddvds 15225 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
331, 3, 32syl2anc 693 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
3433simpld 475 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ 𝐾)
3533simprd 479 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ 𝑁)
36 dvdsmultr2 15021 . . . . . . . . . . . 12 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)))
3719, 2, 3, 36syl3anc 1326 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)))
3835, 37mpd 15 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁))
39 dvdsgcd 15261 . . . . . . . . . . 11 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁))))
4019, 1, 4, 39syl3anc 1326 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁))))
4134, 38, 40mp2and 715 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)))
4241adantr 481 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)))
43 dvdsval2 14986 . . . . . . . . 9 (((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ))
4420, 22, 16, 43syl3anc 1326 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ))
4542, 44mpbid 222 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ)
461adantr 481 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → 𝐾 ∈ ℤ)
47 dvdsmulcr 15011 . . . . . . 7 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0)) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾))
4845, 46, 20, 22, 47syl112anc 1330 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾))
4931, 48mpbid 222 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾)
50 nn0abscl 14052 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
512, 50syl 17 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℕ0)
5251nn0zd 11480 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℤ)
53 dvdsmultr2 15021 . . . . . . . . . . . . 13 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ (abs‘𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾)))
546, 52, 1, 53syl3anc 1326 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾)))
5526, 54mpd 15 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾))
5625simprd 479 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁))
57 iddvds 14995 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀𝑀)
582, 57syl 17 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀𝑀)
59 dvdsabsb 15001 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑀𝑀 ∥ (abs‘𝑀)))
602, 2, 59syl2anc 693 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑀𝑀 ∥ (abs‘𝑀)))
6158, 60mpbid 222 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (abs‘𝑀))
62 dvdsmulc 15009 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ (abs‘𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘𝑀) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁)))
632, 52, 3, 62syl3anc 1326 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘𝑀) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁)))
6461, 63mpd 15 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁))
6552, 3zmulcld 11488 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · 𝑁) ∈ ℤ)
66 dvdstr 15018 . . . . . . . . . . . . 13 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ ∧ ((abs‘𝑀) · 𝑁) ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁) ∧ (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁)) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁)))
676, 4, 65, 66syl3anc 1326 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁) ∧ (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁)) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁)))
6856, 64, 67mp2and 715 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁))
6952, 1zmulcld 11488 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · 𝐾) ∈ ℤ)
70 dvdsgcd 15261 . . . . . . . . . . . 12 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ ((abs‘𝑀) · 𝐾) ∈ ℤ ∧ ((abs‘𝑀) · 𝑁) ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾) ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁)) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁))))
716, 69, 65, 70syl3anc 1326 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾) ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁)) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁))))
7255, 68, 71mp2and 715 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)))
7318nn0red 11352 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℝ)
7418nn0ge0d 11354 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝐾 gcd 𝑁))
7573, 74absidd 14161 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐾 gcd 𝑁)) = (𝐾 gcd 𝑁))
7675oveq2d 6666 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · (abs‘(𝐾 gcd 𝑁))) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
772zcnd 11483 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
7818nn0cnd 11353 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℂ)
7977, 78absmuld 14193 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · (𝐾 gcd 𝑁))) = ((abs‘𝑀) · (abs‘(𝐾 gcd 𝑁))))
80 mulgcd 15265 . . . . . . . . . . . 12 (((abs‘𝑀) ∈ ℕ0𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
8151, 1, 3, 80syl3anc 1326 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
8276, 79, 813eqtr4d 2666 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · (𝐾 gcd 𝑁))) = (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)))
8372, 82breqtrrd 4681 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁))))
842, 19zmulcld 11488 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · (𝐾 gcd 𝑁)) ∈ ℤ)
85 dvdsabsb 15001 . . . . . . . . . 10 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ (𝑀 · (𝐾 gcd 𝑁)) ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁)))))
866, 84, 85syl2anc 693 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁)))))
8783, 86mpbird 247 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
8887adantr 481 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
8923, 88eqbrtrd 4675 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
902adantr 481 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → 𝑀 ∈ ℤ)
91 dvdsmulcr 15011 . . . . . . 7 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0)) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀))
9245, 90, 20, 22, 91syl112anc 1330 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀))
9389, 92mpbid 222 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀)
94 dvdsgcd 15261 . . . . . 6 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀)))
9545, 46, 90, 94syl3anc 1326 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀)))
9649, 93, 95mp2and 715 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀))
9711nn0zd 11480 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℤ)
9897adantr 481 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑀) ∈ ℤ)
99 dvdsmulc 15009 . . . . 5 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ (𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))))
10045, 98, 20, 99syl3anc 1326 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))))
10196, 100mpd 15 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
10223, 101eqbrtrrd 4677 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
10315, 102pm2.61dane 2881 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  0cc0 9936   · cmul 9941   / cdiv 10684  0cn0 11292  cz 11377  abscabs 13974  cdvds 14983   gcd cgcd 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217
This theorem is referenced by:  rpmulgcd2  15370  rpmul  15373
  Copyright terms: Public domain W3C validator