Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpsubst Structured version   Visualization version   GIF version

Theorem mzpsubst 37311
Description: Substituting polynomials for the variables of a polynomial results in a polynomial. 𝐺 is expected to depend on 𝑦 and provide the polynomials which are being substituted. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpsubst ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
Distinct variable groups:   𝑥,𝑊,𝑦   𝑥,𝐹   𝑥,𝑉,𝑦   𝑥,𝐺
Allowed substitution hints:   𝐹(𝑦)   𝐺(𝑦)

Proof of Theorem mzpsubst
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → 𝑊 ∈ V)
2 elfvex 6221 . . 3 (𝐹 ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
323ad2ant2 1083 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → 𝑉 ∈ V)
4 simp3 1063 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
5 simp2 1062 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → 𝐹 ∈ (mzPoly‘𝑉))
6 simpr 477 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → 𝑥 ∈ (ℤ ↑𝑚 𝑊))
7 simpll3 1102 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
8 simpll2 1101 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → 𝑉 ∈ V)
9 mzpf 37299 . . . . . . . . . . . . . 14 (𝐺 ∈ (mzPoly‘𝑊) → 𝐺:(ℤ ↑𝑚 𝑊)⟶ℤ)
109ffvelrnda 6359 . . . . . . . . . . . . 13 ((𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → (𝐺𝑥) ∈ ℤ)
1110expcom 451 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ ↑𝑚 𝑊) → (𝐺 ∈ (mzPoly‘𝑊) → (𝐺𝑥) ∈ ℤ))
1211ralimdv 2963 . . . . . . . . . . 11 (𝑥 ∈ (ℤ ↑𝑚 𝑊) → (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) → ∀𝑦𝑉 (𝐺𝑥) ∈ ℤ))
1312imp 445 . . . . . . . . . 10 ((𝑥 ∈ (ℤ ↑𝑚 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → ∀𝑦𝑉 (𝐺𝑥) ∈ ℤ)
14 eqid 2622 . . . . . . . . . . 11 (𝑦𝑉 ↦ (𝐺𝑥)) = (𝑦𝑉 ↦ (𝐺𝑥))
1514fmpt 6381 . . . . . . . . . 10 (∀𝑦𝑉 (𝐺𝑥) ∈ ℤ ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
1613, 15sylib 208 . . . . . . . . 9 ((𝑥 ∈ (ℤ ↑𝑚 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
1716adantr 481 . . . . . . . 8 (((𝑥 ∈ (ℤ ↑𝑚 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
18 zex 11386 . . . . . . . . 9 ℤ ∈ V
19 simpr 477 . . . . . . . . 9 (((𝑥 ∈ (ℤ ↑𝑚 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → 𝑉 ∈ V)
20 elmapg 7870 . . . . . . . . 9 ((ℤ ∈ V ∧ 𝑉 ∈ V) → ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑𝑚 𝑉) ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ))
2118, 19, 20sylancr 695 . . . . . . . 8 (((𝑥 ∈ (ℤ ↑𝑚 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑𝑚 𝑉) ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ))
2217, 21mpbird 247 . . . . . . 7 (((𝑥 ∈ (ℤ ↑𝑚 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑𝑚 𝑉))
236, 7, 8, 22syl21anc 1325 . . . . . 6 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑𝑚 𝑉))
24 vex 3203 . . . . . . 7 𝑏 ∈ V
2524fvconst2 6469 . . . . . 6 ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑𝑚 𝑉) → (((ℤ ↑𝑚 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥))) = 𝑏)
2623, 25syl 17 . . . . 5 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → (((ℤ ↑𝑚 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥))) = 𝑏)
2726mpteq2dva 4744 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (((ℤ ↑𝑚 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ 𝑏))
28 mzpconstmpt 37303 . . . . 5 ((𝑊 ∈ V ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ 𝑏) ∈ (mzPoly‘𝑊))
29283ad2antl1 1223 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ 𝑏) ∈ (mzPoly‘𝑊))
3027, 29eqeltrd 2701 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (((ℤ ↑𝑚 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
31 simpr 477 . . . . . . . . 9 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → 𝑥 ∈ (ℤ ↑𝑚 𝑊))
32 simpll3 1102 . . . . . . . . 9 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
33 simpll2 1101 . . . . . . . . 9 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → 𝑉 ∈ V)
3431, 32, 33, 22syl21anc 1325 . . . . . . . 8 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑𝑚 𝑉))
35 fveq1 6190 . . . . . . . . 9 (𝑐 = (𝑦𝑉 ↦ (𝐺𝑥)) → (𝑐𝑏) = ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏))
36 eqid 2622 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))
37 fvex 6201 . . . . . . . . 9 ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏) ∈ V
3835, 36, 37fvmpt 6282 . . . . . . . 8 ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑𝑚 𝑉) → ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏))
3934, 38syl 17 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏))
40 simplr 792 . . . . . . . 8 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → 𝑏𝑉)
41 fvex 6201 . . . . . . . 8 (𝑏 / 𝑦𝐺𝑥) ∈ V
42 csbeq1 3536 . . . . . . . . . 10 (𝑎 = 𝑏𝑎 / 𝑦𝐺 = 𝑏 / 𝑦𝐺)
4342fveq1d 6193 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 / 𝑦𝐺𝑥) = (𝑏 / 𝑦𝐺𝑥))
44 nfcv 2764 . . . . . . . . . 10 𝑎(𝐺𝑥)
45 nfcsb1v 3549 . . . . . . . . . . 11 𝑦𝑎 / 𝑦𝐺
46 nfcv 2764 . . . . . . . . . . 11 𝑦𝑥
4745, 46nffv 6198 . . . . . . . . . 10 𝑦(𝑎 / 𝑦𝐺𝑥)
48 csbeq1a 3542 . . . . . . . . . . 11 (𝑦 = 𝑎𝐺 = 𝑎 / 𝑦𝐺)
4948fveq1d 6193 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝐺𝑥) = (𝑎 / 𝑦𝐺𝑥))
5044, 47, 49cbvmpt 4749 . . . . . . . . 9 (𝑦𝑉 ↦ (𝐺𝑥)) = (𝑎𝑉 ↦ (𝑎 / 𝑦𝐺𝑥))
5143, 50fvmptg 6280 . . . . . . . 8 ((𝑏𝑉 ∧ (𝑏 / 𝑦𝐺𝑥) ∈ V) → ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏) = (𝑏 / 𝑦𝐺𝑥))
5240, 41, 51sylancl 694 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏) = (𝑏 / 𝑦𝐺𝑥))
5339, 52eqtrd 2656 . . . . . 6 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝑏 / 𝑦𝐺𝑥))
5453mpteq2dva 4744 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏 / 𝑦𝐺𝑥)))
55 simpr 477 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏𝑉)
56 simpl3 1066 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
57 nfcsb1v 3549 . . . . . . . . . 10 𝑦𝑏 / 𝑦𝐺
5857nfel1 2779 . . . . . . . . 9 𝑦𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊)
59 csbeq1a 3542 . . . . . . . . . 10 (𝑦 = 𝑏𝐺 = 𝑏 / 𝑦𝐺)
6059eleq1d 2686 . . . . . . . . 9 (𝑦 = 𝑏 → (𝐺 ∈ (mzPoly‘𝑊) ↔ 𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊)))
6158, 60rspc 3303 . . . . . . . 8 (𝑏𝑉 → (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) → 𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊)))
6255, 56, 61sylc 65 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊))
63 mzpf 37299 . . . . . . 7 (𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊) → 𝑏 / 𝑦𝐺:(ℤ ↑𝑚 𝑊)⟶ℤ)
6462, 63syl 17 . . . . . 6 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏 / 𝑦𝐺:(ℤ ↑𝑚 𝑊)⟶ℤ)
6564feqmptd 6249 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏 / 𝑦𝐺 = (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏 / 𝑦𝐺𝑥)))
6654, 65eqtr4d 2659 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) = 𝑏 / 𝑦𝐺)
6766, 62eqeltrd 2701 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
68 simp2l 1087 . . . . . 6 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ)
69 ffn 6045 . . . . . 6 (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ → 𝑏 Fn (ℤ ↑𝑚 𝑉))
7068, 69syl 17 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑏 Fn (ℤ ↑𝑚 𝑉))
71 simp3l 1089 . . . . . 6 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ)
72 ffn 6045 . . . . . 6 (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ → 𝑐 Fn (ℤ ↑𝑚 𝑉))
7371, 72syl 17 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑐 Fn (ℤ ↑𝑚 𝑉))
74 simp13 1093 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
75 simp12 1092 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑉 ∈ V)
76 simplll 798 . . . . . . 7 ((((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → 𝑏 Fn (ℤ ↑𝑚 𝑉))
77 simpllr 799 . . . . . . 7 ((((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → 𝑐 Fn (ℤ ↑𝑚 𝑉))
78 ovexd 6680 . . . . . . 7 ((((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → (ℤ ↑𝑚 𝑉) ∈ V)
79 simpr 477 . . . . . . . . . 10 ((((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → 𝑥 ∈ (ℤ ↑𝑚 𝑊))
80 simplrl 800 . . . . . . . . . 10 ((((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
8179, 80, 12sylc 65 . . . . . . . . 9 ((((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → ∀𝑦𝑉 (𝐺𝑥) ∈ ℤ)
8281, 15sylib 208 . . . . . . . 8 ((((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
83 simplrr 801 . . . . . . . . 9 ((((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → 𝑉 ∈ V)
8418, 83, 20sylancr 695 . . . . . . . 8 ((((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑𝑚 𝑉) ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ))
8582, 84mpbird 247 . . . . . . 7 ((((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑𝑚 𝑉))
86 fnfvof 6911 . . . . . . 7 (((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ ((ℤ ↑𝑚 𝑉) ∈ V ∧ (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑𝑚 𝑉))) → ((𝑏𝑓 + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
8776, 77, 78, 85, 86syl22anc 1327 . . . . . 6 ((((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → ((𝑏𝑓 + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
8887mpteq2dva 4744 . . . . 5 (((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏𝑓 + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
8970, 73, 74, 75, 88syl22anc 1327 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏𝑓 + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
90 simp2r 1088 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
91 simp3r 1090 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
92 mzpaddmpt 37304 . . . . 5 (((𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
9390, 91, 92syl2anc 693 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
9489, 93eqeltrd 2701 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏𝑓 + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
95 fnfvof 6911 . . . . . . 7 (((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ ((ℤ ↑𝑚 𝑉) ∈ V ∧ (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑𝑚 𝑉))) → ((𝑏𝑓 · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
9676, 77, 78, 85, 95syl22anc 1327 . . . . . 6 ((((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑊)) → ((𝑏𝑓 · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
9796mpteq2dva 4744 . . . . 5 (((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏𝑓 · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
9870, 73, 74, 75, 97syl22anc 1327 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏𝑓 · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
99 mzpmulmpt 37305 . . . . 5 (((𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
10090, 91, 99syl2anc 693 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
10198, 100eqeltrd 2701 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏𝑓 · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
102 fveq1 6190 . . . . 5 (𝑎 = ((ℤ ↑𝑚 𝑉) × {𝑏}) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (((ℤ ↑𝑚 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥))))
103102mpteq2dv 4745 . . . 4 (𝑎 = ((ℤ ↑𝑚 𝑉) × {𝑏}) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (((ℤ ↑𝑚 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))))
104103eleq1d 2686 . . 3 (𝑎 = ((ℤ ↑𝑚 𝑉) × {𝑏}) → ((𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (((ℤ ↑𝑚 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
105 fveq1 6190 . . . . 5 (𝑎 = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))))
106105mpteq2dv 4745 . . . 4 (𝑎 = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))))
107106eleq1d 2686 . . 3 (𝑎 = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) → ((𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
108 fveq1 6190 . . . . 5 (𝑎 = 𝑏 → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))))
109108mpteq2dv 4745 . . . 4 (𝑎 = 𝑏 → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))))
110109eleq1d 2686 . . 3 (𝑎 = 𝑏 → ((𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
111 fveq1 6190 . . . . 5 (𝑎 = 𝑐 → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))
112111mpteq2dv 4745 . . . 4 (𝑎 = 𝑐 → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
113112eleq1d 2686 . . 3 (𝑎 = 𝑐 → ((𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
114 fveq1 6190 . . . . 5 (𝑎 = (𝑏𝑓 + 𝑐) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏𝑓 + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))))
115114mpteq2dv 4745 . . . 4 (𝑎 = (𝑏𝑓 + 𝑐) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏𝑓 + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))))
116115eleq1d 2686 . . 3 (𝑎 = (𝑏𝑓 + 𝑐) → ((𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏𝑓 + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
117 fveq1 6190 . . . . 5 (𝑎 = (𝑏𝑓 · 𝑐) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏𝑓 · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))))
118117mpteq2dv 4745 . . . 4 (𝑎 = (𝑏𝑓 · 𝑐) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏𝑓 · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))))
119118eleq1d 2686 . . 3 (𝑎 = (𝑏𝑓 · 𝑐) → ((𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ ((𝑏𝑓 · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
120 fveq1 6190 . . . . 5 (𝑎 = 𝐹 → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥))))
121120mpteq2dv 4745 . . . 4 (𝑎 = 𝐹 → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))))
122121eleq1d 2686 . . 3 (𝑎 = 𝐹 → ((𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
12330, 67, 94, 101, 104, 107, 110, 113, 116, 119, 122mzpindd 37309 . 2 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
1241, 3, 4, 5, 123syl31anc 1329 1 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  csb 3533  {csn 4177  cmpt 4729   × cxp 5112   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑚 cmap 7857   + caddc 9939   · cmul 9941  cz 11377  mzPolycmzp 37285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-mzpcl 37286  df-mzp 37287
This theorem is referenced by:  mzprename  37312
  Copyright terms: Public domain W3C validator