Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpindd Structured version   Visualization version   GIF version

Theorem mzpindd 37309
Description: "Structural" induction to prove properties of all polynomial functions. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Hypotheses
Ref Expression
mzpindd.co ((𝜑𝑓 ∈ ℤ) → 𝜒)
mzpindd.pr ((𝜑𝑓𝑉) → 𝜃)
mzpindd.ad ((𝜑 ∧ (𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂)) → 𝜁)
mzpindd.mu ((𝜑 ∧ (𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂)) → 𝜎)
mzpindd.1 (𝑥 = ((ℤ ↑𝑚 𝑉) × {𝑓}) → (𝜓𝜒))
mzpindd.2 (𝑥 = (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) → (𝜓𝜃))
mzpindd.3 (𝑥 = 𝑓 → (𝜓𝜏))
mzpindd.4 (𝑥 = 𝑔 → (𝜓𝜂))
mzpindd.5 (𝑥 = (𝑓𝑓 + 𝑔) → (𝜓𝜁))
mzpindd.6 (𝑥 = (𝑓𝑓 · 𝑔) → (𝜓𝜎))
mzpindd.7 (𝑥 = 𝐴 → (𝜓𝜌))
Assertion
Ref Expression
mzpindd ((𝜑𝐴 ∈ (mzPoly‘𝑉)) → 𝜌)
Distinct variable groups:   𝜑,𝑥,𝑓,𝑔   𝜓,𝑓,𝑔   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜂,𝑥   𝜁,𝑥   𝜎,𝑥   𝜌,𝑥   𝑥,𝑉,𝑓,𝑔   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑓,𝑔)   𝜃(𝑓,𝑔)   𝜏(𝑓,𝑔)   𝜂(𝑓,𝑔)   𝜁(𝑓,𝑔)   𝜎(𝑓,𝑔)   𝜌(𝑓,𝑔)   𝐴(𝑓,𝑔)

Proof of Theorem mzpindd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6221 . . . 4 (𝐴 ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
21adantl 482 . . 3 ((𝜑𝐴 ∈ (mzPoly‘𝑉)) → 𝑉 ∈ V)
3 mzpval 37295 . . . . . . 7 (𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
43adantl 482 . . . . . 6 ((𝜑𝑉 ∈ V) → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
5 ssrab2 3687 . . . . . . . . . 10 {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉))
65a1i 11 . . . . . . . . 9 ((𝜑𝑉 ∈ V) → {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)))
7 ovex 6678 . . . . . . . . . . . . . . 15 (ℤ ↑𝑚 𝑉) ∈ V
8 zex 11386 . . . . . . . . . . . . . . 15 ℤ ∈ V
97, 8constmap 37276 . . . . . . . . . . . . . 14 (𝑓 ∈ ℤ → ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)))
109adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)))
11 mzpindd.co . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → 𝜒)
12 mzpindd.1 . . . . . . . . . . . . . 14 (𝑥 = ((ℤ ↑𝑚 𝑉) × {𝑓}) → (𝜓𝜒))
1312elrab 3363 . . . . . . . . . . . . 13 (((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ↔ (((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜒))
1410, 11, 13sylanbrc 698 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ ℤ) → ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓})
1514ralrimiva 2966 . . . . . . . . . . 11 (𝜑 → ∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓})
1615adantr 481 . . . . . . . . . 10 ((𝜑𝑉 ∈ V) → ∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓})
178a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑𝑚 𝑉)) → ℤ ∈ V)
18 simpllr 799 . . . . . . . . . . . . . . . 16 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑𝑚 𝑉)) → 𝑉 ∈ V)
19 simpr 477 . . . . . . . . . . . . . . . 16 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑𝑚 𝑉)) → 𝑔 ∈ (ℤ ↑𝑚 𝑉))
20 elmapg 7870 . . . . . . . . . . . . . . . . 17 ((ℤ ∈ V ∧ 𝑉 ∈ V) → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↔ 𝑔:𝑉⟶ℤ))
2120biimpa 501 . . . . . . . . . . . . . . . 16 (((ℤ ∈ V ∧ 𝑉 ∈ V) ∧ 𝑔 ∈ (ℤ ↑𝑚 𝑉)) → 𝑔:𝑉⟶ℤ)
2217, 18, 19, 21syl21anc 1325 . . . . . . . . . . . . . . 15 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑𝑚 𝑉)) → 𝑔:𝑉⟶ℤ)
23 simplr 792 . . . . . . . . . . . . . . 15 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑𝑚 𝑉)) → 𝑓𝑉)
2422, 23ffvelrnd 6360 . . . . . . . . . . . . . 14 ((((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) ∧ 𝑔 ∈ (ℤ ↑𝑚 𝑉)) → (𝑔𝑓) ∈ ℤ)
25 eqid 2622 . . . . . . . . . . . . . 14 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) = (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓))
2624, 25fmptd 6385 . . . . . . . . . . . . 13 (((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)):(ℤ ↑𝑚 𝑉)⟶ℤ)
278, 7elmap 7886 . . . . . . . . . . . . 13 ((𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ↔ (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)):(ℤ ↑𝑚 𝑉)⟶ℤ)
2826, 27sylibr 224 . . . . . . . . . . . 12 (((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)))
29 mzpindd.pr . . . . . . . . . . . . 13 ((𝜑𝑓𝑉) → 𝜃)
3029adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) → 𝜃)
31 mzpindd.2 . . . . . . . . . . . . 13 (𝑥 = (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) → (𝜓𝜃))
3231elrab 3363 . . . . . . . . . . . 12 ((𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ↔ ((𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜃))
3328, 30, 32sylanbrc 698 . . . . . . . . . . 11 (((𝜑𝑉 ∈ V) ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓})
3433ralrimiva 2966 . . . . . . . . . 10 ((𝜑𝑉 ∈ V) → ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓})
3516, 34jca 554 . . . . . . . . 9 ((𝜑𝑉 ∈ V) → (∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}))
36 zaddcl 11417 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
3736adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 + 𝑏) ∈ ℤ)
38 simpl 473 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ) → 𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ)
39 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ) → 𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ)
407a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ) → (ℤ ↑𝑚 𝑉) ∈ V)
41 inidm 3822 . . . . . . . . . . . . . . . . . . 19 ((ℤ ↑𝑚 𝑉) ∩ (ℤ ↑𝑚 𝑉)) = (ℤ ↑𝑚 𝑉)
4237, 38, 39, 40, 40, 41off 6912 . . . . . . . . . . . . . . . . . 18 ((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ) → (𝑓𝑓 + 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ)
4342ad2ant2r 783 . . . . . . . . . . . . . . . . 17 (((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂)) → (𝑓𝑓 + 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ)
4443adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂))) → (𝑓𝑓 + 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ)
45 mzpindd.ad . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂)) → 𝜁)
46453expb 1266 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂))) → 𝜁)
4744, 46jca 554 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂))) → ((𝑓𝑓 + 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜁))
48 zmulcl 11426 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
4948adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑏) ∈ ℤ)
5049, 38, 39, 40, 40, 41off 6912 . . . . . . . . . . . . . . . . 17 ((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ) → (𝑓𝑓 · 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ)
5150ad2ant2r 783 . . . . . . . . . . . . . . . 16 (((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂)) → (𝑓𝑓 · 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ)
5251adantl 482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂))) → (𝑓𝑓 · 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ)
53 mzpindd.mu . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂)) → 𝜎)
54533expb 1266 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂))) → 𝜎)
5547, 52, 54jca32 558 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂))) → (((𝑓𝑓 + 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜁) ∧ ((𝑓𝑓 · 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜎)))
5655ex 450 . . . . . . . . . . . . 13 (𝜑 → (((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂)) → (((𝑓𝑓 + 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜁) ∧ ((𝑓𝑓 · 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜎))))
578, 7elmap 7886 . . . . . . . . . . . . . . 15 (𝑓 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ↔ 𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ)
5857anbi1i 731 . . . . . . . . . . . . . 14 ((𝑓 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜏) ↔ (𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏))
598, 7elmap 7886 . . . . . . . . . . . . . . 15 (𝑔 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ↔ 𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ)
6059anbi1i 731 . . . . . . . . . . . . . 14 ((𝑔 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜂) ↔ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂))
6158, 60anbi12i 733 . . . . . . . . . . . . 13 (((𝑓 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜏) ∧ (𝑔 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜂)) ↔ ((𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂)))
628, 7elmap 7886 . . . . . . . . . . . . . . 15 ((𝑓𝑓 + 𝑔) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ↔ (𝑓𝑓 + 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ)
6362anbi1i 731 . . . . . . . . . . . . . 14 (((𝑓𝑓 + 𝑔) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜁) ↔ ((𝑓𝑓 + 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜁))
648, 7elmap 7886 . . . . . . . . . . . . . . 15 ((𝑓𝑓 · 𝑔) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ↔ (𝑓𝑓 · 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ)
6564anbi1i 731 . . . . . . . . . . . . . 14 (((𝑓𝑓 · 𝑔) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜎) ↔ ((𝑓𝑓 · 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜎))
6663, 65anbi12i 733 . . . . . . . . . . . . 13 ((((𝑓𝑓 + 𝑔) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜁) ∧ ((𝑓𝑓 · 𝑔) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜎)) ↔ (((𝑓𝑓 + 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜁) ∧ ((𝑓𝑓 · 𝑔):(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜎)))
6756, 61, 663imtr4g 285 . . . . . . . . . . . 12 (𝜑 → (((𝑓 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜏) ∧ (𝑔 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜂)) → (((𝑓𝑓 + 𝑔) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜁) ∧ ((𝑓𝑓 · 𝑔) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜎))))
68 mzpindd.3 . . . . . . . . . . . . . 14 (𝑥 = 𝑓 → (𝜓𝜏))
6968elrab 3363 . . . . . . . . . . . . 13 (𝑓 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ↔ (𝑓 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜏))
70 mzpindd.4 . . . . . . . . . . . . . 14 (𝑥 = 𝑔 → (𝜓𝜂))
7170elrab 3363 . . . . . . . . . . . . 13 (𝑔 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ↔ (𝑔 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜂))
7269, 71anbi12i 733 . . . . . . . . . . . 12 ((𝑓 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∧ 𝑔 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}) ↔ ((𝑓 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜏) ∧ (𝑔 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜂)))
73 mzpindd.5 . . . . . . . . . . . . . 14 (𝑥 = (𝑓𝑓 + 𝑔) → (𝜓𝜁))
7473elrab 3363 . . . . . . . . . . . . 13 ((𝑓𝑓 + 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ↔ ((𝑓𝑓 + 𝑔) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜁))
75 mzpindd.6 . . . . . . . . . . . . . 14 (𝑥 = (𝑓𝑓 · 𝑔) → (𝜓𝜎))
7675elrab 3363 . . . . . . . . . . . . 13 ((𝑓𝑓 · 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ↔ ((𝑓𝑓 · 𝑔) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜎))
7774, 76anbi12i 733 . . . . . . . . . . . 12 (((𝑓𝑓 + 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∧ (𝑓𝑓 · 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}) ↔ (((𝑓𝑓 + 𝑔) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜁) ∧ ((𝑓𝑓 · 𝑔) ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜎)))
7867, 72, 773imtr4g 285 . . . . . . . . . . 11 (𝜑 → ((𝑓 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∧ 𝑔 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}) → ((𝑓𝑓 + 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∧ (𝑓𝑓 · 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓})))
7978ralrimivv 2970 . . . . . . . . . 10 (𝜑 → ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ((𝑓𝑓 + 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∧ (𝑓𝑓 · 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}))
8079adantr 481 . . . . . . . . 9 ((𝜑𝑉 ∈ V) → ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ((𝑓𝑓 + 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∧ (𝑓𝑓 · 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}))
816, 35, 80jca32 558 . . . . . . . 8 ((𝜑𝑉 ∈ V) → ({𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}) ∧ ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ((𝑓𝑓 + 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∧ (𝑓𝑓 · 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}))))
82 elmzpcl 37289 . . . . . . . . 9 (𝑉 ∈ V → ({𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∈ (mzPolyCld‘𝑉) ↔ ({𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}) ∧ ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ((𝑓𝑓 + 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∧ (𝑓𝑓 · 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓})))))
8382adantl 482 . . . . . . . 8 ((𝜑𝑉 ∈ V) → ({𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∈ (mzPolyCld‘𝑉) ↔ ({𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}) ∧ ∀𝑓 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓}∀𝑔 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ((𝑓𝑓 + 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∧ (𝑓𝑓 · 𝑔) ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓})))))
8481, 83mpbird 247 . . . . . . 7 ((𝜑𝑉 ∈ V) → {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∈ (mzPolyCld‘𝑉))
85 intss1 4492 . . . . . . 7 ({𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ∈ (mzPolyCld‘𝑉) → (mzPolyCld‘𝑉) ⊆ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓})
8684, 85syl 17 . . . . . 6 ((𝜑𝑉 ∈ V) → (mzPolyCld‘𝑉) ⊆ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓})
874, 86eqsstrd 3639 . . . . 5 ((𝜑𝑉 ∈ V) → (mzPoly‘𝑉) ⊆ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓})
8887sselda 3603 . . . 4 (((𝜑𝑉 ∈ V) ∧ 𝐴 ∈ (mzPoly‘𝑉)) → 𝐴 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓})
8988an32s 846 . . 3 (((𝜑𝐴 ∈ (mzPoly‘𝑉)) ∧ 𝑉 ∈ V) → 𝐴 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓})
902, 89mpdan 702 . 2 ((𝜑𝐴 ∈ (mzPoly‘𝑉)) → 𝐴 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓})
91 mzpindd.7 . . . 4 (𝑥 = 𝐴 → (𝜓𝜌))
9291elrab 3363 . . 3 (𝐴 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} ↔ (𝐴 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ 𝜌))
9392simprbi 480 . 2 (𝐴 ∈ {𝑥 ∈ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ 𝜓} → 𝜌)
9490, 93syl 17 1 ((𝜑𝐴 ∈ (mzPoly‘𝑉)) → 𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wss 3574  {csn 4177   cint 4475  cmpt 4729   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑚 cmap 7857   + caddc 9939   · cmul 9941  cz 11377  mzPolyCldcmzpcl 37284  mzPolycmzp 37285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-mzpcl 37286  df-mzp 37287
This theorem is referenced by:  mzpmfp  37310  mzpsubst  37311  mzpcompact2lem  37314  mzpcong  37539
  Copyright terms: Public domain W3C validator