| Step | Hyp | Ref
| Expression |
| 1 | | nbupgruvtxres.s |
. . . . . . 7
⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
| 2 | | opex 4932 |
. . . . . . 7
⊢
〈(𝑉 ∖
{𝑁}), ( I ↾ 𝐹)〉 ∈
V |
| 3 | 1, 2 | eqeltri 2697 |
. . . . . 6
⊢ 𝑆 ∈ V |
| 4 | | eqid 2622 |
. . . . . . 7
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
| 5 | 4 | nbgrssovtx 26260 |
. . . . . 6
⊢ (𝑆 ∈ V → (𝑆 NeighbVtx 𝐾) ⊆ ((Vtx‘𝑆) ∖ {𝐾})) |
| 6 | 3, 5 | mp1i 13 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑆 NeighbVtx 𝐾) ⊆ ((Vtx‘𝑆) ∖ {𝐾})) |
| 7 | | difpr 4334 |
. . . . . 6
⊢ (𝑉 ∖ {𝑁, 𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾}) |
| 8 | | nbupgruvtxres.v |
. . . . . . . . . 10
⊢ 𝑉 = (Vtx‘𝐺) |
| 9 | | nbupgruvtxres.e |
. . . . . . . . . 10
⊢ 𝐸 = (Edg‘𝐺) |
| 10 | | nbupgruvtxres.f |
. . . . . . . . . 10
⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
| 11 | 8, 9, 10, 1 | upgrres1lem2 26203 |
. . . . . . . . 9
⊢
(Vtx‘𝑆) =
(𝑉 ∖ {𝑁}) |
| 12 | 11 | eqcomi 2631 |
. . . . . . . 8
⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
| 13 | 12 | a1i 11 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)) |
| 14 | 13 | difeq1d 3727 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝑉 ∖ {𝑁}) ∖ {𝐾}) = ((Vtx‘𝑆) ∖ {𝐾})) |
| 15 | 7, 14 | syl5eq 2668 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑉 ∖ {𝑁, 𝐾}) = ((Vtx‘𝑆) ∖ {𝐾})) |
| 16 | 6, 15 | sseqtr4d 3642 |
. . . 4
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑆 NeighbVtx 𝐾) ⊆ (𝑉 ∖ {𝑁, 𝐾})) |
| 17 | 16 | adantr 481 |
. . 3
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑆 NeighbVtx 𝐾) ⊆ (𝑉 ∖ {𝑁, 𝐾})) |
| 18 | | simpl 473 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}))) |
| 19 | 18 | anim1i 592 |
. . . . . . 7
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑁 ∈
𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}))) |
| 20 | | df-3an 1039 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) ↔ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}))) |
| 21 | 19, 20 | sylibr 224 |
. . . . . 6
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑁 ∈
𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}))) |
| 22 | | dif32 3891 |
. . . . . . . . . . . . 13
⊢ ((𝑉 ∖ {𝑁}) ∖ {𝐾}) = ((𝑉 ∖ {𝐾}) ∖ {𝑁}) |
| 23 | 7, 22 | eqtri 2644 |
. . . . . . . . . . . 12
⊢ (𝑉 ∖ {𝑁, 𝐾}) = ((𝑉 ∖ {𝐾}) ∖ {𝑁}) |
| 24 | 23 | eleq2i 2693 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) ↔ 𝑛 ∈ ((𝑉 ∖ {𝐾}) ∖ {𝑁})) |
| 25 | | eldifsn 4317 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((𝑉 ∖ {𝐾}) ∖ {𝑁}) ↔ (𝑛 ∈ (𝑉 ∖ {𝐾}) ∧ 𝑛 ≠ 𝑁)) |
| 26 | 24, 25 | bitri 264 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) ↔ (𝑛 ∈ (𝑉 ∖ {𝐾}) ∧ 𝑛 ≠ 𝑁)) |
| 27 | 26 | simplbi 476 |
. . . . . . . . 9
⊢ (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) → 𝑛 ∈ (𝑉 ∖ {𝐾})) |
| 28 | | eleq2 2690 |
. . . . . . . . 9
⊢ ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑛 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝑛 ∈ (𝑉 ∖ {𝐾}))) |
| 29 | 27, 28 | syl5ibr 236 |
. . . . . . . 8
⊢ ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) → 𝑛 ∈ (𝐺 NeighbVtx 𝐾))) |
| 30 | 29 | adantl 482 |
. . . . . . 7
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) → 𝑛 ∈ (𝐺 NeighbVtx 𝐾))) |
| 31 | 30 | imp 445 |
. . . . . 6
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑁 ∈
𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑛 ∈ (𝐺 NeighbVtx 𝐾)) |
| 32 | 8, 9, 10, 1 | nbupgrres 26266 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑛 ∈ (𝐺 NeighbVtx 𝐾) → 𝑛 ∈ (𝑆 NeighbVtx 𝐾))) |
| 33 | 21, 31, 32 | sylc 65 |
. . . . 5
⊢
(((((𝐺 ∈
UPGraph ∧ 𝑁 ∈
𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑛 ∈ (𝑆 NeighbVtx 𝐾)) |
| 34 | 33 | ralrimiva 2966 |
. . . 4
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → ∀𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})𝑛 ∈ (𝑆 NeighbVtx 𝐾)) |
| 35 | | dfss3 3592 |
. . . 4
⊢ ((𝑉 ∖ {𝑁, 𝐾}) ⊆ (𝑆 NeighbVtx 𝐾) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})𝑛 ∈ (𝑆 NeighbVtx 𝐾)) |
| 36 | 34, 35 | sylibr 224 |
. . 3
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑉 ∖ {𝑁, 𝐾}) ⊆ (𝑆 NeighbVtx 𝐾)) |
| 37 | 17, 36 | eqssd 3620 |
. 2
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾})) |
| 38 | 37 | ex 450 |
1
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾}))) |