![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negmod | Structured version Visualization version GIF version |
Description: The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by AV, 5-Jul-2020.) |
Ref | Expression |
---|---|
negmod | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 11841 | . . . . 5 ⊢ (𝑁 ∈ ℝ+ → 𝑁 ∈ ℂ) | |
2 | recn 10026 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | negsub 10329 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 + -𝐴) = (𝑁 − 𝐴)) | |
4 | 1, 2, 3 | syl2anr 495 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑁 + -𝐴) = (𝑁 − 𝐴)) |
5 | 4 | eqcomd 2628 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑁 − 𝐴) = (𝑁 + -𝐴)) |
6 | 5 | oveq1d 6665 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑁 − 𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁)) |
7 | 1 | mulid2d 10058 | . . . . 5 ⊢ (𝑁 ∈ ℝ+ → (1 · 𝑁) = 𝑁) |
8 | 7 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (1 · 𝑁) = 𝑁) |
9 | 8 | oveq1d 6665 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((1 · 𝑁) + -𝐴) = (𝑁 + -𝐴)) |
10 | 9 | oveq1d 6665 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁)) |
11 | 1cnd 10056 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 1 ∈ ℂ) | |
12 | mulcl 10020 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 · 𝑁) ∈ ℂ) | |
13 | 11, 1, 12 | syl2an 494 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (1 · 𝑁) ∈ ℂ) |
14 | renegcl 10344 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
15 | 14 | recnd 10068 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℂ) |
16 | 15 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → -𝐴 ∈ ℂ) |
17 | 13, 16 | addcomd 10238 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((1 · 𝑁) + -𝐴) = (-𝐴 + (1 · 𝑁))) |
18 | 17 | oveq1d 6665 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((-𝐴 + (1 · 𝑁)) mod 𝑁)) |
19 | 14 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → -𝐴 ∈ ℝ) |
20 | simpr 477 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 𝑁 ∈ ℝ+) | |
21 | 1zzd 11408 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 1 ∈ ℤ) | |
22 | modcyc 12705 | . . . 4 ⊢ ((-𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁)) | |
23 | 19, 20, 21, 22 | syl3anc 1326 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁)) |
24 | 18, 23 | eqtrd 2656 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((1 · 𝑁) + -𝐴) mod 𝑁) = (-𝐴 mod 𝑁)) |
25 | 6, 10, 24 | 3eqtr2rd 2663 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 (class class class)co 6650 ℂcc 9934 ℝcr 9935 1c1 9937 + caddc 9939 · cmul 9941 − cmin 10266 -cneg 10267 ℤcz 11377 ℝ+crp 11832 mod cmo 12668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fl 12593 df-mod 12669 |
This theorem is referenced by: m1modnnsub1 12716 gausslemma2dlem5a 25095 |
Copyright terms: Public domain | W3C validator |