MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modcyc Structured version   Visualization version   GIF version

Theorem modcyc 12705
Description: The modulo operation is periodic. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
modcyc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))

Proof of Theorem modcyc
StepHypRef Expression
1 zre 11381 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 rpre 11839 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
3 remulcl 10021 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑁 · 𝐵) ∈ ℝ)
41, 2, 3syl2an 494 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) ∈ ℝ)
5 readdcl 10019 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑁 · 𝐵) ∈ ℝ) → (𝐴 + (𝑁 · 𝐵)) ∈ ℝ)
64, 5sylan2 491 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+)) → (𝐴 + (𝑁 · 𝐵)) ∈ ℝ)
763impb 1260 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐴 + (𝑁 · 𝐵)) ∈ ℝ)
8 simp3 1063 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
9 modval 12670 . . . . 5 (((𝐴 + (𝑁 · 𝐵)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))))
107, 8, 9syl2anc 693 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))))
11 recn 10026 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
12113ad2ant1 1082 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
134recnd 10068 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) ∈ ℂ)
14133adant1 1079 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) ∈ ℂ)
15 rpcnne0 11850 . . . . . . . . . . . 12 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
16153ad2ant3 1084 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
17 divdir 10710 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑁 · 𝐵) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)))
1812, 14, 16, 17syl3anc 1326 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)))
19 zcn 11382 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
20 divcan4 10712 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
21203expb 1266 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
2219, 15, 21syl2an 494 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
23223adant1 1079 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
2423oveq2d 6666 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)) = ((𝐴 / 𝐵) + 𝑁))
2518, 24eqtrd 2656 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + 𝑁))
2625fveq2d 6195 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)) = (⌊‘((𝐴 / 𝐵) + 𝑁)))
27 rerpdivcl 11861 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
28273adant2 1080 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
29 simp2 1062 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝑁 ∈ ℤ)
30 fladdz 12626 . . . . . . . . 9 (((𝐴 / 𝐵) ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘((𝐴 / 𝐵) + 𝑁)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3128, 29, 30syl2anc 693 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘((𝐴 / 𝐵) + 𝑁)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3226, 31eqtrd 2656 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3332oveq2d 6666 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵))) = (𝐵 · ((⌊‘(𝐴 / 𝐵)) + 𝑁)))
34 rpcn 11841 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
35343ad2ant3 1084 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
36 reflcl 12597 . . . . . . . . . 10 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
3736recnd 10068 . . . . . . . . 9 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
3827, 37syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
39383adant2 1080 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
40193ad2ant2 1083 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝑁 ∈ ℂ)
4135, 39, 40adddid 10064 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · ((⌊‘(𝐴 / 𝐵)) + 𝑁)) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝐵 · 𝑁)))
42 mulcom 10022 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑁 · 𝐵) = (𝐵 · 𝑁))
4319, 34, 42syl2an 494 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) = (𝐵 · 𝑁))
44433adant1 1079 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) = (𝐵 · 𝑁))
4544eqcomd 2628 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · 𝑁) = (𝑁 · 𝐵))
4645oveq2d 6666 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝐵 · 𝑁)) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵)))
4733, 41, 463eqtrd 2660 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵))) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵)))
4847oveq2d 6666 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))) = ((𝐴 + (𝑁 · 𝐵)) − ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵))))
4934adantl 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
5049, 38mulcld 10060 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ)
51503adant2 1080 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ)
5212, 51, 14pnpcan2d 10430 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) − ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
5310, 48, 523eqtrd 2660 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
54 modval 12670 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
55543adant2 1080 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
5653, 55eqtr4d 2659 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
57563com23 1271 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941  cmin 10266   / cdiv 10684  cz 11377  +crp 11832  cfl 12591   mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669
This theorem is referenced by:  modcyc2  12706  muladdmodid  12710  negmod  12715  modsumfzodifsn  12743  modxai  15772  wilthlem1  24794  wilthlem2  24795  lgsdir2lem1  25050  lgsdir2lem5  25054  lgseisenlem1  25100  dirkerper  40313  sqwvfoura  40445  sqwvfourb  40446  fourierswlem  40447  fouriersw  40448  3exp4mod41  41533  m1modmmod  42316
  Copyright terms: Public domain W3C validator