MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlnogt0 Structured version   Visualization version   GIF version

Theorem nmlnogt0 27652
Description: The norm of a nonzero linear operator is positive. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlnogt0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlnogt0.0 𝑍 = (𝑈 0op 𝑊)
nmlnogt0.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
nmlnogt0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑍 ↔ 0 < (𝑁𝑇)))

Proof of Theorem nmlnogt0
StepHypRef Expression
1 nmlnogt0.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
2 nmlnogt0.0 . . . 4 𝑍 = (𝑈 0op 𝑊)
3 nmlnogt0.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
41, 2, 3nmlno0 27650 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍))
54necon3bid 2838 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝑁𝑇) ≠ 0 ↔ 𝑇𝑍))
6 eqid 2622 . . . 4 (BaseSet‘𝑈) = (BaseSet‘𝑈)
7 eqid 2622 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
86, 7, 3lnof 27610 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
96, 7, 1nmoxr 27621 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → (𝑁𝑇) ∈ ℝ*)
106, 7, 1nmooge0 27622 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → 0 ≤ (𝑁𝑇))
11 0xr 10086 . . . . . . 7 0 ∈ ℝ*
12 xrlttri2 11975 . . . . . . 7 (((𝑁𝑇) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑁𝑇) ≠ 0 ↔ ((𝑁𝑇) < 0 ∨ 0 < (𝑁𝑇))))
1311, 12mpan2 707 . . . . . 6 ((𝑁𝑇) ∈ ℝ* → ((𝑁𝑇) ≠ 0 ↔ ((𝑁𝑇) < 0 ∨ 0 < (𝑁𝑇))))
1413adantr 481 . . . . 5 (((𝑁𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁𝑇)) → ((𝑁𝑇) ≠ 0 ↔ ((𝑁𝑇) < 0 ∨ 0 < (𝑁𝑇))))
15 xrlenlt 10103 . . . . . . . 8 ((0 ∈ ℝ* ∧ (𝑁𝑇) ∈ ℝ*) → (0 ≤ (𝑁𝑇) ↔ ¬ (𝑁𝑇) < 0))
1611, 15mpan 706 . . . . . . 7 ((𝑁𝑇) ∈ ℝ* → (0 ≤ (𝑁𝑇) ↔ ¬ (𝑁𝑇) < 0))
1716biimpa 501 . . . . . 6 (((𝑁𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁𝑇)) → ¬ (𝑁𝑇) < 0)
18 biorf 420 . . . . . 6 (¬ (𝑁𝑇) < 0 → (0 < (𝑁𝑇) ↔ ((𝑁𝑇) < 0 ∨ 0 < (𝑁𝑇))))
1917, 18syl 17 . . . . 5 (((𝑁𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁𝑇)) → (0 < (𝑁𝑇) ↔ ((𝑁𝑇) < 0 ∨ 0 < (𝑁𝑇))))
2014, 19bitr4d 271 . . . 4 (((𝑁𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁𝑇)) → ((𝑁𝑇) ≠ 0 ↔ 0 < (𝑁𝑇)))
219, 10, 20syl2anc 693 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → ((𝑁𝑇) ≠ 0 ↔ 0 < (𝑁𝑇)))
228, 21syld3an3 1371 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝑁𝑇) ≠ 0 ↔ 0 < (𝑁𝑇)))
235, 22bitr3d 270 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑍 ↔ 0 < (𝑁𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  *cxr 10073   < clt 10074  cle 10075  NrmCVeccnv 27439  BaseSetcba 27441   LnOp clno 27595   normOpOLD cnmoo 27596   0op c0o 27598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-lno 27599  df-nmoo 27600  df-0o 27602
This theorem is referenced by:  blocni  27660
  Copyright terms: Public domain W3C validator