![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmooge0 | Structured version Visualization version GIF version |
Description: The norm of an operator is nonnegative. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoxr.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoxr.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoxr.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
Ref | Expression |
---|---|
nmooge0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ (𝑁‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10086 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ∈ ℝ*) |
3 | simp2 1062 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 𝑊 ∈ NrmCVec) | |
4 | nmoxr.1 | . . . . . . . 8 ⊢ 𝑋 = (BaseSet‘𝑈) | |
5 | eqid 2622 | . . . . . . . 8 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
6 | 4, 5 | nvzcl 27489 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → (0vec‘𝑈) ∈ 𝑋) |
7 | ffvelrn 6357 | . . . . . . 7 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (0vec‘𝑈) ∈ 𝑋) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) | |
8 | 6, 7 | sylan2 491 | . . . . . 6 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑈 ∈ NrmCVec) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
9 | 8 | ancoms 469 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
10 | 9 | 3adant2 1080 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑇‘(0vec‘𝑈)) ∈ 𝑌) |
11 | nmoxr.2 | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
12 | eqid 2622 | . . . . 5 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
13 | 11, 12 | nvcl 27516 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec‘𝑈)) ∈ 𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ) |
14 | 3, 10, 13 | syl2anc 693 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ) |
15 | 14 | rexrd 10089 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ ℝ*) |
16 | nmoxr.3 | . . 3 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
17 | 4, 11, 16 | nmoxr 27621 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) ∈ ℝ*) |
18 | 11, 12 | nvge0 27528 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘(0vec‘𝑈)) ∈ 𝑌) → 0 ≤ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈)))) |
19 | 3, 10, 18 | syl2anc 693 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈)))) |
20 | 11, 12 | nmosetre 27619 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ) |
21 | ressxr 10083 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
22 | 20, 21 | syl6ss 3615 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ*) |
23 | eqid 2622 | . . . . . . 7 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
24 | 4, 5, 23 | nmosetn0 27620 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}) |
25 | supxrub 12154 | . . . . . 6 ⊢ (({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ* ∧ ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ∈ {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) | |
26 | 22, 24, 25 | syl2an 494 | . . . . 5 ⊢ (((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ 𝑈 ∈ NrmCVec) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
27 | 26 | 3impa 1259 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌 ∧ 𝑈 ∈ NrmCVec) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
28 | 27 | 3comr 1273 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
29 | 4, 11, 23, 12, 16 | nmooval 27618 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
30 | 28, 29 | breqtrrd 4681 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((normCV‘𝑊)‘(𝑇‘(0vec‘𝑈))) ≤ (𝑁‘𝑇)) |
31 | 2, 15, 17, 19, 30 | xrletrd 11993 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ (𝑁‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 {cab 2608 ∃wrex 2913 ⊆ wss 3574 class class class wbr 4653 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 supcsup 8346 ℝcr 9935 0cc0 9936 1c1 9937 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 NrmCVeccnv 27439 BaseSetcba 27441 0veccn0v 27443 normCVcnmcv 27445 normOpOLD cnmoo 27596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-grpo 27347 df-gid 27348 df-ginv 27349 df-ablo 27399 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-nmcv 27455 df-nmoo 27600 |
This theorem is referenced by: nmlnogt0 27652 htthlem 27774 |
Copyright terms: Public domain | W3C validator |