MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoi2 Structured version   Visualization version   GIF version

Theorem nmoi2 22534
Description: The operator norm is a bound on the growth of a vector under the action of the operator. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
nmoi2.z 0 = (0g𝑆)
Assertion
Ref Expression
nmoi2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹))

Proof of Theorem nmoi2
StepHypRef Expression
1 simpl2 1065 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 𝑇 ∈ NrmGrp)
2 simpl3 1066 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
3 nmoi.2 . . . . . . . 8 𝑉 = (Base‘𝑆)
4 eqid 2622 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
53, 4ghmf 17664 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
62, 5syl 17 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 𝐹:𝑉⟶(Base‘𝑇))
7 simprl 794 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 𝑋𝑉)
86, 7ffvelrnd 6360 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐹𝑋) ∈ (Base‘𝑇))
9 nmoi.4 . . . . . 6 𝑀 = (norm‘𝑇)
104, 9nmcl 22420 . . . . 5 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
111, 8, 10syl2anc 693 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
1211rexrd 10089 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑀‘(𝐹𝑋)) ∈ ℝ*)
13 nmofval.1 . . . . . 6 𝑁 = (𝑆 normOp 𝑇)
1413nmocl 22524 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
1514adantr 481 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑁𝐹) ∈ ℝ*)
16 nmoi.3 . . . . . . . 8 𝐿 = (norm‘𝑆)
17 nmoi2.z . . . . . . . 8 0 = (0g𝑆)
183, 16, 17nmrpcl 22424 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉𝑋0 ) → (𝐿𝑋) ∈ ℝ+)
19183expb 1266 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℝ+)
20193ad2antl1 1223 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℝ+)
2120rpxrd 11873 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℝ*)
2215, 21xmulcld 12132 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑁𝐹) ·e (𝐿𝑋)) ∈ ℝ*)
2320rpreccld 11882 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (1 / (𝐿𝑋)) ∈ ℝ+)
2423rpxrd 11873 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (1 / (𝐿𝑋)) ∈ ℝ*)
2523rpge0d 11876 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → 0 ≤ (1 / (𝐿𝑋)))
2624, 25jca 554 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((1 / (𝐿𝑋)) ∈ ℝ* ∧ 0 ≤ (1 / (𝐿𝑋))))
2713, 3, 16, 9nmoix 22533 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
2827adantrr 753 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
29 xlemul1a 12118 . . 3 ((((𝑀‘(𝐹𝑋)) ∈ ℝ* ∧ ((𝑁𝐹) ·e (𝐿𝑋)) ∈ ℝ* ∧ ((1 / (𝐿𝑋)) ∈ ℝ* ∧ 0 ≤ (1 / (𝐿𝑋)))) ∧ (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋))) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) ≤ (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))))
3012, 22, 26, 28, 29syl31anc 1329 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) ≤ (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))))
3123rpred 11872 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (1 / (𝐿𝑋)) ∈ ℝ)
32 rexmul 12101 . . . 4 (((𝑀‘(𝐹𝑋)) ∈ ℝ ∧ (1 / (𝐿𝑋)) ∈ ℝ) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑀‘(𝐹𝑋)) · (1 / (𝐿𝑋))))
3311, 31, 32syl2anc 693 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑀‘(𝐹𝑋)) · (1 / (𝐿𝑋))))
3411recnd 10068 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝑀‘(𝐹𝑋)) ∈ ℂ)
3520rpcnd 11874 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℂ)
3620rpne0d 11877 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ≠ 0)
3734, 35, 36divrecd 10804 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) = ((𝑀‘(𝐹𝑋)) · (1 / (𝐿𝑋))))
3833, 37eqtr4d 2659 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)))
39 xmulass 12117 . . . 4 (((𝑁𝐹) ∈ ℝ* ∧ (𝐿𝑋) ∈ ℝ* ∧ (1 / (𝐿𝑋)) ∈ ℝ*) → (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑁𝐹) ·e ((𝐿𝑋) ·e (1 / (𝐿𝑋)))))
4015, 21, 24, 39syl3anc 1326 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))) = ((𝑁𝐹) ·e ((𝐿𝑋) ·e (1 / (𝐿𝑋)))))
4120rpred 11872 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (𝐿𝑋) ∈ ℝ)
42 rexmul 12101 . . . . . 6 (((𝐿𝑋) ∈ ℝ ∧ (1 / (𝐿𝑋)) ∈ ℝ) → ((𝐿𝑋) ·e (1 / (𝐿𝑋))) = ((𝐿𝑋) · (1 / (𝐿𝑋))))
4341, 31, 42syl2anc 693 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝐿𝑋) ·e (1 / (𝐿𝑋))) = ((𝐿𝑋) · (1 / (𝐿𝑋))))
4435, 36recidd 10796 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝐿𝑋) · (1 / (𝐿𝑋))) = 1)
4543, 44eqtrd 2656 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝐿𝑋) ·e (1 / (𝐿𝑋))) = 1)
4645oveq2d 6666 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑁𝐹) ·e ((𝐿𝑋) ·e (1 / (𝐿𝑋)))) = ((𝑁𝐹) ·e 1))
47 xmulid1 12109 . . . 4 ((𝑁𝐹) ∈ ℝ* → ((𝑁𝐹) ·e 1) = (𝑁𝐹))
4815, 47syl 17 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑁𝐹) ·e 1) = (𝑁𝐹))
4940, 46, 483eqtrd 2660 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → (((𝑁𝐹) ·e (𝐿𝑋)) ·e (1 / (𝐿𝑋))) = (𝑁𝐹))
5030, 38, 493brtr3d 4684 1 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑋𝑉𝑋0 )) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  *cxr 10073  cle 10075   / cdiv 10684  +crp 11832   ·e cxmu 11945  Basecbs 15857  0gc0g 16100   GrpHom cghm 17657  normcnm 22381  NrmGrpcngp 22382   normOp cnmo 22509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ghm 17658  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-nmo 22512  df-nghm 22513
This theorem is referenced by:  nmoleub  22535
  Copyright terms: Public domain W3C validator