![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpreccld | Structured version Visualization version GIF version |
Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpreccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpreccl 11857 | . 2 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 (class class class)co 6650 1c1 9937 / cdiv 10684 ℝ+crp 11832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-rp 11833 |
This theorem is referenced by: rprecred 11883 resqrex 13991 rlimno1 14384 supcvg 14588 harmonic 14591 expcnv 14596 eirrlem 14932 prmreclem5 15624 prmreclem6 15625 met1stc 22326 met2ndci 22327 nmoi2 22534 bcthlem5 23125 ovolsca 23283 vitali 23382 ismbf3d 23421 itg2seq 23509 itg2mulclem 23513 itg2mulc 23514 aalioulem3 24089 aaliou3lem8 24100 dvradcnv 24175 tanregt0 24285 divlogrlim 24381 advlogexp 24401 logtayllem 24405 divcxp 24433 cxpcn3lem 24488 loglesqrt 24499 logbrec 24520 ang180lem2 24540 asinlem3 24598 leibpi 24669 rlimcnp2 24693 efrlim 24696 cxplim 24698 cxp2lim 24703 divsqrtsumlem 24706 amgmlem 24716 emcllem2 24723 emcllem4 24725 emcllem5 24726 emcllem6 24727 fsumharmonic 24738 lgamgulmlem5 24759 lgambdd 24763 basellem3 24809 basellem6 24812 logfaclbnd 24947 bclbnd 25005 rplogsumlem2 25174 rpvmasumlem 25176 dchrisum0lem2a 25206 log2sumbnd 25233 logdivbnd 25245 pntlemo 25296 smcnlem 27552 minvecolem3 27732 minvecolem4 27736 esumdivc 30145 dya2ub 30332 omssubadd 30362 logdivsqrle 30728 iprodgam 31628 faclimlem1 31629 faclimlem3 31631 faclim 31632 iprodfac 31633 poimirlem29 33438 poimirlem30 33439 heiborlem3 33612 heiborlem6 33615 heiborlem8 33617 heibor 33620 irrapxlem4 37389 irrapxlem5 37390 oddfl 39489 xralrple4 39589 xrralrecnnge 39613 ioodvbdlimc1lem2 40147 ioodvbdlimc2lem 40149 stoweid 40280 wallispi 40287 stirlinglem1 40291 stirlinglem6 40296 stirlinglem10 40300 stirlinglem11 40301 dirkertrigeqlem3 40317 dirkercncflem2 40321 iinhoiicc 40888 iunhoiioo 40890 vonioolem2 40895 vonicclem1 40897 amgmlemALT 42549 young2d 42551 |
Copyright terms: Public domain | W3C validator |