MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnwos Structured version   Visualization version   GIF version

Theorem nnwos 11755
Description: Well-ordering principle: any nonempty set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.)
Hypothesis
Ref Expression
nnwos.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
nnwos (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem nnwos
StepHypRef Expression
1 nfrab1 3122 . . 3 𝑥{𝑥 ∈ ℕ ∣ 𝜑}
2 nfcv 2764 . . 3 𝑦{𝑥 ∈ ℕ ∣ 𝜑}
31, 2nnwof 11754 . 2 (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅) → ∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦)
4 ssrab2 3687 . . . 4 {𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ
54biantrur 527 . . 3 ({𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅ ↔ ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅))
6 rabn0 3958 . . 3 ({𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ ℕ 𝜑)
75, 6bitr3i 266 . 2 (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅) ↔ ∃𝑥 ∈ ℕ 𝜑)
8 df-rex 2918 . . 3 (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦))
9 rabid 3116 . . . . 5 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑥 ∈ ℕ ∧ 𝜑))
10 df-ral 2917 . . . . . 6 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦))
11 nnwos.1 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜓))
1211elrab 3363 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜓))
1312imbi1i 339 . . . . . . . 8 ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ ((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥𝑦))
14 impexp 462 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥𝑦) ↔ (𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
1513, 14bitri 264 . . . . . . 7 ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ (𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
1615albii 1747 . . . . . 6 (∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
1710, 16bitri 264 . . . . 5 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
189, 17anbi12i 733 . . . 4 ((𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
1918exbii 1774 . . 3 (∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦) ↔ ∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
20 df-ral 2917 . . . . . . 7 (∀𝑦 ∈ ℕ (𝜓𝑥𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
2120anbi2i 730 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
22 anass 681 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
2321, 22bitr3i 266 . . . . 5 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
2423exbii 1774 . . . 4 (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
25 df-rex 2918 . . . 4 (∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
2624, 25bitr4i 267 . . 3 (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
278, 19, 263bitri 286 . 2 (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
283, 7, 273imtr3i 280 1 (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915   class class class wbr 4653  cle 10075  cn 11020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  indstr  11756  infpnlem2  15615
  Copyright terms: Public domain W3C validator