![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpnlem2 | Structured version Visualization version GIF version |
Description: Lemma for infpn 15616. For any positive integer 𝑁, there exists a prime number 𝑗 greater than 𝑁. (Contributed by NM, 5-May-2005.) |
Ref | Expression |
---|---|
infpnlem.1 | ⊢ 𝐾 = ((!‘𝑁) + 1) |
Ref | Expression |
---|---|
infpnlem2 | ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infpnlem.1 | . . . . 5 ⊢ 𝐾 = ((!‘𝑁) + 1) | |
2 | nnnn0 11299 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | faccl 13070 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ) |
5 | 4 | peano2nnd 11037 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) + 1) ∈ ℕ) |
6 | 1, 5 | syl5eqel 2705 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐾 ∈ ℕ) |
7 | 4 | nnge1d 11063 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ≤ (!‘𝑁)) |
8 | 1nn 11031 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
9 | nnleltp1 11432 | . . . . . . 7 ⊢ ((1 ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1))) | |
10 | 8, 4, 9 | sylancr 695 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1))) |
11 | 7, 10 | mpbid 222 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 < ((!‘𝑁) + 1)) |
12 | 11, 1 | syl6breqr 4695 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 < 𝐾) |
13 | nncn 11028 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℂ) | |
14 | nnne0 11053 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ≠ 0) | |
15 | 13, 14 | jca 554 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) |
16 | divid 10714 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ 𝐾 ≠ 0) → (𝐾 / 𝐾) = 1) | |
17 | 6, 15, 16 | 3syl 18 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝐾 / 𝐾) = 1) |
18 | 17, 8 | syl6eqel 2709 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐾 / 𝐾) ∈ ℕ) |
19 | breq2 4657 | . . . . . 6 ⊢ (𝑗 = 𝐾 → (1 < 𝑗 ↔ 1 < 𝐾)) | |
20 | oveq2 6658 | . . . . . . 7 ⊢ (𝑗 = 𝐾 → (𝐾 / 𝑗) = (𝐾 / 𝐾)) | |
21 | 20 | eleq1d 2686 | . . . . . 6 ⊢ (𝑗 = 𝐾 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝐾) ∈ ℕ)) |
22 | 19, 21 | anbi12d 747 | . . . . 5 ⊢ (𝑗 = 𝐾 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ))) |
23 | 22 | rspcev 3309 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)) → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
24 | 6, 12, 18, 23 | syl12anc 1324 | . . 3 ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
25 | breq2 4657 | . . . . 5 ⊢ (𝑗 = 𝑘 → (1 < 𝑗 ↔ 1 < 𝑘)) | |
26 | oveq2 6658 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝐾 / 𝑗) = (𝐾 / 𝑘)) | |
27 | 26 | eleq1d 2686 | . . . . 5 ⊢ (𝑗 = 𝑘 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝑘) ∈ ℕ)) |
28 | 25, 27 | anbi12d 747 | . . . 4 ⊢ (𝑗 = 𝑘 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ))) |
29 | 28 | nnwos 11755 | . . 3 ⊢ (∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘))) |
30 | 24, 29 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘))) |
31 | 1 | infpnlem1 15614 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘)) → (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))) |
32 | 31 | reximdva 3017 | . 2 ⊢ (𝑁 ∈ ℕ → (∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘)) → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))) |
33 | 30, 32 | mpd 15 | 1 ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 0cc0 9936 1c1 9937 + caddc 9939 < clt 10074 ≤ cle 10075 / cdiv 10684 ℕcn 11020 ℕ0cn0 11292 !cfa 13060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-seq 12802 df-fac 13061 |
This theorem is referenced by: infpn 15616 |
Copyright terms: Public domain | W3C validator |