Proof of Theorem norm3lemt
| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 6657 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 −ℎ
𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) |
| 2 | 1 | fveq2d 6195 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘(𝐴 −ℎ 𝐶)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶))) |
| 3 | 2 | breq1d 4663 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2))) |
| 4 | 3 | anbi1d 741 |
. . 3
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)))) |
| 5 | | oveq1 6657 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 −ℎ
𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) |
| 6 | 5 | fveq2d 6195 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘(𝐴 −ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))) |
| 7 | 6 | breq1d 4663 |
. . 3
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷 ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷)) |
| 8 | 4, 7 | imbi12d 334 |
. 2
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷))) |
| 9 | | oveq2 6658 |
. . . . . 6
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐶 −ℎ
𝐵) = (𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵,
0ℎ))) |
| 10 | 9 | fveq2d 6195 |
. . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘(𝐶 −ℎ 𝐵)) =
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))) |
| 11 | 10 | breq1d 4663 |
. . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2) ↔
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2))) |
| 12 | 11 | anbi2d 740 |
. . 3
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)))) |
| 13 | | oveq2 6658 |
. . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
| 14 | 13 | fveq2d 6195 |
. . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
| 15 | 14 | breq1d 4663 |
. . 3
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷 ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷)) |
| 16 | 12, 15 | imbi12d 334 |
. 2
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷))) |
| 17 | | oveq2 6658 |
. . . . . 6
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) |
| 18 | 17 | fveq2d 6195 |
. . . . 5
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)))) |
| 19 | 18 | breq1d 4663 |
. . . 4
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2))) |
| 20 | | oveq1 6657 |
. . . . . 6
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (𝐶 −ℎ
if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) =
(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
| 21 | 20 | fveq2d 6195 |
. . . . 5
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) =
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
| 22 | 21 | breq1d 4663 |
. . . 4
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
((normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2) ↔
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2))) |
| 23 | 19, 22 | anbi12d 747 |
. . 3
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)))) |
| 24 | 23 | imbi1d 331 |
. 2
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷))) |
| 25 | | oveq1 6657 |
. . . . 5
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → (𝐷 / 2) = (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) |
| 26 | 25 | breq2d 4665 |
. . . 4
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2))) |
| 27 | 25 | breq2d 4665 |
. . . 4
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2) ↔
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2))) |
| 28 | 26, 27 | anbi12d 747 |
. . 3
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)))) |
| 29 | | breq2 4657 |
. . 3
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷 ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < if(𝐷 ∈ ℝ, 𝐷, 2))) |
| 30 | 28, 29 | imbi12d 334 |
. 2
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < if(𝐷 ∈ ℝ, 𝐷, 2)))) |
| 31 | | ifhvhv0 27879 |
. . 3
⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈
ℋ |
| 32 | | ifhvhv0 27879 |
. . 3
⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈
ℋ |
| 33 | | ifhvhv0 27879 |
. . 3
⊢ if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ∈
ℋ |
| 34 | | 2re 11090 |
. . . 4
⊢ 2 ∈
ℝ |
| 35 | 34 | elimel 4150 |
. . 3
⊢ if(𝐷 ∈ ℝ, 𝐷, 2) ∈
ℝ |
| 36 | 31, 32, 33, 35 | norm3lem 28006 |
. 2
⊢
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < if(𝐷 ∈ ℝ, 𝐷, 2)) |
| 37 | 8, 16, 24, 30, 36 | dedth4h 4142 |
1
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℝ)) →
(((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷)) |