MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvg Structured version   Visualization version   GIF version

Theorem ntrivcvg 14629
Description: A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvg.1 𝑍 = (ℤ𝑀)
ntrivcvg.2 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
ntrivcvg.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
ntrivcvg (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝐹,𝑛,𝑦   𝜑,𝑘,𝑦   𝑘,𝑀,𝑛,𝑦   𝜑,𝑛,𝑦   𝑘,𝑍,𝑦
Allowed substitution hint:   𝑍(𝑛)

Proof of Theorem ntrivcvg
StepHypRef Expression
1 ntrivcvg.2 . 2 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
2 uzm1 11718 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
3 ntrivcvg.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
42, 3eleq2s 2719 . . . . . . . 8 (𝑛𝑍 → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
54ad2antlr 763 . . . . . . 7 (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
6 seqeq1 12804 . . . . . . . . . . 11 (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹))
76breq1d 4663 . . . . . . . . . 10 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦))
8 seqex 12803 . . . . . . . . . . 11 seq𝑀( · , 𝐹) ∈ V
9 vex 3203 . . . . . . . . . . 11 𝑦 ∈ V
108, 9breldm 5329 . . . . . . . . . 10 (seq𝑀( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
117, 10syl6bi 243 . . . . . . . . 9 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
1211adantld 483 . . . . . . . 8 (𝑛 = 𝑀 → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
13 simplr 792 . . . . . . . . . . . . 13 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (𝑛 − 1) ∈ 𝑍)
14 ntrivcvg.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1514adantlr 751 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1615adantlr 751 . . . . . . . . . . . . . 14 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1716adantlr 751 . . . . . . . . . . . . 13 (((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
18 uzssz 11707 . . . . . . . . . . . . . . . . . . . 20 (ℤ𝑀) ⊆ ℤ
193, 18eqsstri 3635 . . . . . . . . . . . . . . . . . . 19 𝑍 ⊆ ℤ
20 simplr 792 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛𝑍)
2119, 20sseldi 3601 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ ℤ)
2221zcnd 11483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ ℂ)
23 1cnd 10056 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 1 ∈ ℂ)
2422, 23npcand 10396 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → ((𝑛 − 1) + 1) = 𝑛)
2524seqeq1d 12807 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → seq((𝑛 − 1) + 1)( · , 𝐹) = seq𝑛( · , 𝐹))
2625breq1d 4663 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → (seq((𝑛 − 1) + 1)( · , 𝐹) ⇝ 𝑦 ↔ seq𝑛( · , 𝐹) ⇝ 𝑦))
2726biimpar 502 . . . . . . . . . . . . 13 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq((𝑛 − 1) + 1)( · , 𝐹) ⇝ 𝑦)
283, 13, 17, 27clim2prod 14620 . . . . . . . . . . . 12 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦))
29 ovex 6678 . . . . . . . . . . . . 13 ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦) ∈ V
308, 29breldm 5329 . . . . . . . . . . . 12 (seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3128, 30syl 17 . . . . . . . . . . 11 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3231an32s 846 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑛 − 1) ∈ 𝑍) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3332expcom 451 . . . . . . . . 9 ((𝑛 − 1) ∈ 𝑍 → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
343eqcomi 2631 . . . . . . . . 9 (ℤ𝑀) = 𝑍
3533, 34eleq2s 2719 . . . . . . . 8 ((𝑛 − 1) ∈ (ℤ𝑀) → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
3612, 35jaoi 394 . . . . . . 7 ((𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)) → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
375, 36mpcom 38 . . . . . 6 (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3837ex 450 . . . . 5 ((𝜑𝑛𝑍) → (seq𝑛( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
3938adantld 483 . . . 4 ((𝜑𝑛𝑍) → ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
4039exlimdv 1861 . . 3 ((𝜑𝑛𝑍) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
4140rexlimdva 3031 . 2 (𝜑 → (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
421, 41mpd 15 1 (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  dom cdm 5114  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  cz 11377  cuz 11687  seqcseq 12801  cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  iprodclim2  14730  iprodcl  14732
  Copyright terms: Public domain W3C validator