MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smcnlem Structured version   Visualization version   GIF version

Theorem smcnlem 27552
Description: Lemma for smcn 27553. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
smcn.c 𝐶 = (IndMet‘𝑈)
smcn.j 𝐽 = (MetOpen‘𝐶)
smcn.s 𝑆 = ( ·𝑠OLD𝑈)
smcn.k 𝐾 = (TopOpen‘ℂfld)
smcn.x 𝑋 = (BaseSet‘𝑈)
smcn.n 𝑁 = (normCV𝑈)
smcn.u 𝑈 ∈ NrmCVec
smcn.t 𝑇 = (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
Assertion
Ref Expression
smcnlem 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐶   𝐽,𝑟,𝑥,𝑦   𝑈,𝑟,𝑥,𝑦   𝐾,𝑟,𝑥,𝑦   𝑆,𝑟,𝑥,𝑦   𝑋,𝑟,𝑥,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑟)   𝑁(𝑥,𝑦,𝑟)

Proof of Theorem smcnlem
Dummy variables 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smcn.u . . 3 𝑈 ∈ NrmCVec
2 smcn.x . . . 4 𝑋 = (BaseSet‘𝑈)
3 smcn.s . . . 4 𝑆 = ( ·𝑠OLD𝑈)
42, 3nvsf 27474 . . 3 (𝑈 ∈ NrmCVec → 𝑆:(ℂ × 𝑋)⟶𝑋)
51, 4ax-mp 5 . 2 𝑆:(ℂ × 𝑋)⟶𝑋
6 smcn.t . . . . . 6 𝑇 = (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
7 1rp 11836 . . . . . . . 8 1 ∈ ℝ+
8 simpr 477 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 𝑦𝑋)
9 smcn.n . . . . . . . . . . . . 13 𝑁 = (normCV𝑈)
102, 9nvcl 27516 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
111, 8, 10sylancr 695 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
12 abscl 14018 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
1312adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → (abs‘𝑥) ∈ ℝ)
1411, 13readdcld 10069 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → ((𝑁𝑦) + (abs‘𝑥)) ∈ ℝ)
152, 9nvge0 27528 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → 0 ≤ (𝑁𝑦))
161, 8, 15sylancr 695 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 0 ≤ (𝑁𝑦))
17 absge0 14027 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥))
1817adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 0 ≤ (abs‘𝑥))
1911, 13, 16, 18addge0d 10603 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 0 ≤ ((𝑁𝑦) + (abs‘𝑥)))
2014, 19ge0p1rpd 11902 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ+)
21 rpdivcl 11856 . . . . . . . . 9 (((((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ+𝑟 ∈ ℝ+) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+)
2220, 21sylan 488 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+)
23 rpaddcl 11854 . . . . . . . 8 ((1 ∈ ℝ+ ∧ ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℝ+)
247, 22, 23sylancr 695 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℝ+)
2524rpreccld 11882 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) ∈ ℝ+)
266, 25syl5eqel 2705 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑇 ∈ ℝ+)
27 smcn.c . . . . . . . . . . . 12 𝐶 = (IndMet‘𝑈)
282, 27imsmet 27546 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘𝑋))
291, 28ax-mp 5 . . . . . . . . . 10 𝐶 ∈ (Met‘𝑋)
3029a1i 11 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝐶 ∈ (Met‘𝑋))
311a1i 11 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑈 ∈ NrmCVec)
32 simplll 798 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑥 ∈ ℂ)
33 simpllr 799 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑦𝑋)
342, 3nvscl 27481 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦𝑋) → (𝑥𝑆𝑦) ∈ 𝑋)
3531, 32, 33, 34syl3anc 1326 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥𝑆𝑦) ∈ 𝑋)
36 simprll 802 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑧 ∈ ℂ)
37 simprlr 803 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑤𝑋)
382, 3nvscl 27481 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ ℂ ∧ 𝑤𝑋) → (𝑧𝑆𝑤) ∈ 𝑋)
3931, 36, 37, 38syl3anc 1326 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑆𝑤) ∈ 𝑋)
40 metcl 22137 . . . . . . . . 9 ((𝐶 ∈ (Met‘𝑋) ∧ (𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
4130, 35, 39, 40syl3anc 1326 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
422, 3nvscl 27481 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ ℂ ∧ 𝑦𝑋) → (𝑧𝑆𝑦) ∈ 𝑋)
4331, 36, 33, 42syl3anc 1326 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑆𝑦) ∈ 𝑋)
44 metcl 22137 . . . . . . . . . 10 ((𝐶 ∈ (Met‘𝑋) ∧ (𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑦) ∈ 𝑋) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) ∈ ℝ)
4530, 35, 43, 44syl3anc 1326 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) ∈ ℝ)
46 metcl 22137 . . . . . . . . . 10 ((𝐶 ∈ (Met‘𝑋) ∧ (𝑧𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
4730, 43, 39, 46syl3anc 1326 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
4845, 47readdcld 10069 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) ∈ ℝ)
49 rpre 11839 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
5049ad2antlr 763 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑟 ∈ ℝ)
51 mettri 22157 . . . . . . . . 9 ((𝐶 ∈ (Met‘𝑋) ∧ ((𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋 ∧ (𝑧𝑆𝑦) ∈ 𝑋)) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ≤ (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))))
5230, 35, 39, 43, 51syl13anc 1328 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ≤ (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))))
531, 33, 10sylancr 695 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁𝑦) ∈ ℝ)
5432abscld 14175 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑥) ∈ ℝ)
5553, 54readdcld 10069 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑁𝑦) + (abs‘𝑥)) ∈ ℝ)
56 peano2re 10209 . . . . . . . . . . 11 (((𝑁𝑦) + (abs‘𝑥)) ∈ ℝ → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ)
5755, 56syl 17 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ)
5826adantr 481 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ∈ ℝ+)
5958rpred 11872 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ∈ ℝ)
6057, 59remulcld 10070 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) ∈ ℝ)
6132, 36subcld 10392 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥𝑧) ∈ ℂ)
6261abscld 14175 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥𝑧)) ∈ ℝ)
6362, 53remulcld 10070 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘(𝑥𝑧)) · (𝑁𝑦)) ∈ ℝ)
6436abscld 14175 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑧) ∈ ℝ)
65 eqid 2622 . . . . . . . . . . . . . . 15 ( −𝑣𝑈) = ( −𝑣𝑈)
662, 65nvmcl 27501 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋𝑤𝑋) → (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋)
6731, 33, 37, 66syl3anc 1326 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋)
682, 9nvcl 27516 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) ∈ ℝ)
691, 67, 68sylancr 695 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) ∈ ℝ)
7064, 69remulcld 10070 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))) ∈ ℝ)
7153, 59remulcld 10070 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑁𝑦) · 𝑇) ∈ ℝ)
72 peano2re 10209 . . . . . . . . . . . . 13 ((abs‘𝑥) ∈ ℝ → ((abs‘𝑥) + 1) ∈ ℝ)
7354, 72syl 17 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + 1) ∈ ℝ)
7473, 59remulcld 10070 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((abs‘𝑥) + 1) · 𝑇) ∈ ℝ)
751, 33, 15sylancr 695 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 0 ≤ (𝑁𝑦))
7632, 36abssubd 14192 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥𝑧)) = (abs‘(𝑧𝑥)))
7736, 32subcld 10392 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑥) ∈ ℂ)
7877abscld 14175 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) ∈ ℝ)
79 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (abs ∘ − ) = (abs ∘ − )
8079cnmetdval 22574 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
8132, 36, 80syl2anc 693 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
8281, 76eqtrd 2656 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑧𝑥)))
83 simprrl 804 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥(abs ∘ − )𝑧) < 𝑇)
8482, 83eqbrtrrd 4677 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) < 𝑇)
8578, 59, 84ltled 10185 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) ≤ 𝑇)
8676, 85eqbrtrd 4675 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥𝑧)) ≤ 𝑇)
8762, 59, 53, 75, 86lemul1ad 10963 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘(𝑥𝑧)) · (𝑁𝑦)) ≤ (𝑇 · (𝑁𝑦)))
8858rpcnd 11874 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ∈ ℂ)
8953recnd 10068 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁𝑦) ∈ ℂ)
9088, 89mulcomd 10061 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑇 · (𝑁𝑦)) = ((𝑁𝑦) · 𝑇))
9187, 90breqtrd 4679 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘(𝑥𝑧)) · (𝑁𝑦)) ≤ ((𝑁𝑦) · 𝑇))
9236absge0d 14183 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 0 ≤ (abs‘𝑧))
932, 9nvge0 27528 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋) → 0 ≤ (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
941, 67, 93sylancr 695 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 0 ≤ (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
9554, 78readdcld 10069 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + (abs‘(𝑧𝑥))) ∈ ℝ)
9632, 36pncan3d 10395 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + (𝑧𝑥)) = 𝑧)
9796fveq2d 6195 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥 + (𝑧𝑥))) = (abs‘𝑧))
9832, 77abstrid 14195 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥 + (𝑧𝑥))) ≤ ((abs‘𝑥) + (abs‘(𝑧𝑥))))
9997, 98eqbrtrrd 4677 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑧) ≤ ((abs‘𝑥) + (abs‘(𝑧𝑥))))
100 1red 10055 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 1 ∈ ℝ)
101 1re 10039 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
10222adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+)
103 ltaddrp 11867 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+) → 1 < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
104101, 102, 103sylancr 695 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 1 < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
10524adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℝ+)
106105recgt1d 11886 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ↔ (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) < 1))
107104, 106mpbid 222 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) < 1)
1086, 107syl5eqbr 4688 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 < 1)
10959, 100, 108ltled 10185 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ≤ 1)
11078, 59, 100, 85, 109letrd 10194 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) ≤ 1)
11178, 100, 54, 110leadd2dd 10642 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + (abs‘(𝑧𝑥))) ≤ ((abs‘𝑥) + 1))
11264, 95, 73, 99, 111letrd 10194 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑧) ≤ ((abs‘𝑥) + 1))
1132, 65, 9, 27imsdval 27541 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋𝑤𝑋) → (𝑦𝐶𝑤) = (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
11431, 33, 37, 113syl3anc 1326 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑦𝐶𝑤) = (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
115 simprrr 805 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑦𝐶𝑤) < 𝑇)
116114, 115eqbrtrrd 4677 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) < 𝑇)
11769, 59, 116ltled 10185 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) ≤ 𝑇)
11864, 73, 69, 59, 92, 94, 112, 117lemul12ad 10966 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))) ≤ (((abs‘𝑥) + 1) · 𝑇))
11963, 70, 71, 74, 91, 118le2addd 10646 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((abs‘(𝑥𝑧)) · (𝑁𝑦)) + ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤)))) ≤ (((𝑁𝑦) · 𝑇) + (((abs‘𝑥) + 1) · 𝑇)))
120 eqid 2622 . . . . . . . . . . . . . 14 ( +𝑣𝑈) = ( +𝑣𝑈)
1212, 120, 3, 9, 27imsdval2 27542 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑦) ∈ 𝑋) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) = (𝑁‘((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦)))))
12231, 35, 43, 121syl3anc 1326 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) = (𝑁‘((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦)))))
123 neg1cn 11124 . . . . . . . . . . . . . . . 16 -1 ∈ ℂ
124 mulcl 10020 . . . . . . . . . . . . . . . 16 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-1 · 𝑧) ∈ ℂ)
125123, 36, 124sylancr 695 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (-1 · 𝑧) ∈ ℂ)
1262, 120, 3nvdir 27486 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ ℂ ∧ (-1 · 𝑧) ∈ ℂ ∧ 𝑦𝑋)) → ((𝑥 + (-1 · 𝑧))𝑆𝑦) = ((𝑥𝑆𝑦)( +𝑣𝑈)((-1 · 𝑧)𝑆𝑦)))
12731, 32, 125, 33, 126syl13anc 1328 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥 + (-1 · 𝑧))𝑆𝑦) = ((𝑥𝑆𝑦)( +𝑣𝑈)((-1 · 𝑧)𝑆𝑦)))
12836mulm1d 10482 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (-1 · 𝑧) = -𝑧)
129128oveq2d 6666 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + (-1 · 𝑧)) = (𝑥 + -𝑧))
13032, 36negsubd 10398 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + -𝑧) = (𝑥𝑧))
131129, 130eqtrd 2656 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + (-1 · 𝑧)) = (𝑥𝑧))
132131oveq1d 6665 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥 + (-1 · 𝑧))𝑆𝑦) = ((𝑥𝑧)𝑆𝑦))
133123a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → -1 ∈ ℂ)
1342, 3nvsass 27483 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑦𝑋)) → ((-1 · 𝑧)𝑆𝑦) = (-1𝑆(𝑧𝑆𝑦)))
13531, 133, 36, 33, 134syl13anc 1328 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((-1 · 𝑧)𝑆𝑦) = (-1𝑆(𝑧𝑆𝑦)))
136135oveq2d 6666 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)( +𝑣𝑈)((-1 · 𝑧)𝑆𝑦)) = ((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦))))
137127, 132, 1363eqtr3d 2664 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑧)𝑆𝑦) = ((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦))))
138137fveq2d 6195 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘((𝑥𝑧)𝑆𝑦)) = (𝑁‘((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦)))))
1392, 3, 9nvs 27518 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑧) ∈ ℂ ∧ 𝑦𝑋) → (𝑁‘((𝑥𝑧)𝑆𝑦)) = ((abs‘(𝑥𝑧)) · (𝑁𝑦)))
14031, 61, 33, 139syl3anc 1326 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘((𝑥𝑧)𝑆𝑦)) = ((abs‘(𝑥𝑧)) · (𝑁𝑦)))
141122, 138, 1403eqtr2d 2662 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) = ((abs‘(𝑥𝑧)) · (𝑁𝑦)))
1422, 65, 9, 27imsdval 27541 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑧𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) = (𝑁‘((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤))))
14331, 43, 39, 142syl3anc 1326 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) = (𝑁‘((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤))))
1442, 65, 3nvmdi 27503 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝑧 ∈ ℂ ∧ 𝑦𝑋𝑤𝑋)) → (𝑧𝑆(𝑦( −𝑣𝑈)𝑤)) = ((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤)))
14531, 36, 33, 37, 144syl13anc 1328 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑆(𝑦( −𝑣𝑈)𝑤)) = ((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤)))
146145fveq2d 6195 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑧𝑆(𝑦( −𝑣𝑈)𝑤))) = (𝑁‘((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤))))
1472, 3, 9nvs 27518 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ ℂ ∧ (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋) → (𝑁‘(𝑧𝑆(𝑦( −𝑣𝑈)𝑤))) = ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))))
14831, 36, 67, 147syl3anc 1326 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑧𝑆(𝑦( −𝑣𝑈)𝑤))) = ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))))
149143, 146, 1483eqtr2d 2662 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) = ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))))
150141, 149oveq12d 6668 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) = (((abs‘(𝑥𝑧)) · (𝑁𝑦)) + ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤)))))
15154recnd 10068 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑥) ∈ ℂ)
152 1cnd 10056 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 1 ∈ ℂ)
15389, 151, 152addassd 10062 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + (abs‘𝑥)) + 1) = ((𝑁𝑦) + ((abs‘𝑥) + 1)))
154153oveq1d 6665 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = (((𝑁𝑦) + ((abs‘𝑥) + 1)) · 𝑇))
15573recnd 10068 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + 1) ∈ ℂ)
15689, 155, 88adddird 10065 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + ((abs‘𝑥) + 1)) · 𝑇) = (((𝑁𝑦) · 𝑇) + (((abs‘𝑥) + 1) · 𝑇)))
157154, 156eqtrd 2656 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = (((𝑁𝑦) · 𝑇) + (((abs‘𝑥) + 1) · 𝑇)))
158119, 150, 1573brtr4d 4685 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) ≤ ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇))
15957recnd 10068 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℂ)
160105rpcnd 11874 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℂ)
161105rpne0d 11877 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ≠ 0)
162159, 160, 161divrecd 10804 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) = ((((𝑁𝑦) + (abs‘𝑥)) + 1) · (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))))
1636oveq2i 6661 . . . . . . . . . . 11 ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = ((((𝑁𝑦) + (abs‘𝑥)) + 1) · (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))))
164162, 163syl6reqr 2675 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = ((((𝑁𝑦) + (abs‘𝑥)) + 1) / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))))
165 simplr 792 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑟 ∈ ℝ+)
166102rpred 11872 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ)
167166ltp1d 10954 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) < (((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) + 1))
168102rpcnd 11874 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℂ)
169168, 152addcomd 10238 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) + 1) = (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
170167, 169breqtrd 4679 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
17157, 165, 105, 170ltdiv23d 11937 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) < 𝑟)
172164, 171eqbrtrd 4675 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) < 𝑟)
17348, 60, 50, 158, 172lelttrd 10195 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) < 𝑟)
17441, 48, 50, 52, 173lelttrd 10195 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)
175174expr 643 . . . . . 6 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ ℂ ∧ 𝑤𝑋)) → (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
176175ralrimivva 2971 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → ∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
177 breq2 4657 . . . . . . . . 9 (𝑠 = 𝑇 → ((𝑥(abs ∘ − )𝑧) < 𝑠 ↔ (𝑥(abs ∘ − )𝑧) < 𝑇))
178 breq2 4657 . . . . . . . . 9 (𝑠 = 𝑇 → ((𝑦𝐶𝑤) < 𝑠 ↔ (𝑦𝐶𝑤) < 𝑇))
179177, 178anbi12d 747 . . . . . . . 8 (𝑠 = 𝑇 → (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) ↔ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇)))
180179imbi1d 331 . . . . . . 7 (𝑠 = 𝑇 → ((((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟) ↔ (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)))
1811802ralbidv 2989 . . . . . 6 (𝑠 = 𝑇 → (∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟) ↔ ∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)))
182181rspcev 3309 . . . . 5 ((𝑇 ∈ ℝ+ ∧ ∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
18326, 176, 182syl2anc 693 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
184183ralrimiva 2966 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
185184rgen2 2975 . 2 𝑥 ∈ ℂ ∀𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)
186 cnxmet 22576 . . 3 (abs ∘ − ) ∈ (∞Met‘ℂ)
1872, 27imsxmet 27547 . . . 4 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘𝑋))
1881, 187ax-mp 5 . . 3 𝐶 ∈ (∞Met‘𝑋)
189 smcn.k . . . . 5 𝐾 = (TopOpen‘ℂfld)
190189cnfldtopn 22585 . . . 4 𝐾 = (MetOpen‘(abs ∘ − ))
191 smcn.j . . . 4 𝐽 = (MetOpen‘𝐶)
192190, 191, 191txmetcn 22353 . . 3 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ (∞Met‘𝑋)) → (𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽) ↔ (𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))))
193186, 188, 188, 192mp3an 1424 . 2 (𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽) ↔ (𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)))
1945, 185, 193mpbir2an 955 1 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913   class class class wbr 4653   × cxp 5112  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  +crp 11832  abscabs 13974  TopOpenctopn 16082  ∞Metcxmt 19731  Metcme 19732  MetOpencmopn 19736  fldccnfld 19746   Cn ccn 21028   ×t ctx 21363  NrmCVeccnv 27439   +𝑣 cpv 27440  BaseSetcba 27441   ·𝑠OLD cns 27442  𝑣 cnsb 27444  normCVcnmcv 27445  IndMetcims 27446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-tms 22127  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456
This theorem is referenced by:  smcn  27553
  Copyright terms: Public domain W3C validator