MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmdi Structured version   Visualization version   Unicode version

Theorem nvmdi 27503
Description: Distributive law for scalar product over subtraction. (Contributed by NM, 14-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmdi.1  |-  X  =  ( BaseSet `  U )
nvmdi.3  |-  M  =  ( -v `  U
)
nvmdi.4  |-  S  =  ( .sOLD `  U )
Assertion
Ref Expression
nvmdi  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A S ( B M C ) )  =  ( ( A S B ) M ( A S C ) ) )

Proof of Theorem nvmdi
StepHypRef Expression
1 simpr1 1067 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  ->  A  e.  CC )
2 simpr2 1068 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  ->  B  e.  X )
3 neg1cn 11124 . . . . . . 7  |-  -u 1  e.  CC
4 nvmdi.1 . . . . . . . 8  |-  X  =  ( BaseSet `  U )
5 nvmdi.4 . . . . . . . 8  |-  S  =  ( .sOLD `  U )
64, 5nvscl 27481 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  C  e.  X )  ->  ( -u 1 S C )  e.  X )
73, 6mp3an2 1412 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  C  e.  X )  ->  ( -u 1 S C )  e.  X )
873ad2antr3 1228 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( -u 1 S C )  e.  X )
91, 2, 83jca 1242 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A  e.  CC  /\  B  e.  X  /\  ( -u 1 S C )  e.  X ) )
10 eqid 2622 . . . . 5  |-  ( +v
`  U )  =  ( +v `  U
)
114, 10, 5nvdi 27485 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  ( -u 1 S C )  e.  X ) )  ->  ( A S ( B ( +v
`  U ) (
-u 1 S C ) ) )  =  ( ( A S B ) ( +v
`  U ) ( A S ( -u
1 S C ) ) ) )
129, 11syldan 487 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A S ( B ( +v `  U ) ( -u
1 S C ) ) )  =  ( ( A S B ) ( +v `  U ) ( A S ( -u 1 S C ) ) ) )
134, 5nvscom 27484 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  -u 1  e.  CC  /\  C  e.  X ) )  -> 
( A S (
-u 1 S C ) )  =  (
-u 1 S ( A S C ) ) )
143, 13mp3anr2 1422 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  C  e.  X ) )  -> 
( A S (
-u 1 S C ) )  =  (
-u 1 S ( A S C ) ) )
15143adantr2 1221 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A S (
-u 1 S C ) )  =  (
-u 1 S ( A S C ) ) )
1615oveq2d 6666 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( ( A S B ) ( +v
`  U ) ( A S ( -u
1 S C ) ) )  =  ( ( A S B ) ( +v `  U ) ( -u
1 S ( A S C ) ) ) )
1712, 16eqtrd 2656 . 2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A S ( B ( +v `  U ) ( -u
1 S C ) ) )  =  ( ( A S B ) ( +v `  U ) ( -u
1 S ( A S C ) ) ) )
18 nvmdi.3 . . . . 5  |-  M  =  ( -v `  U
)
194, 10, 5, 18nvmval 27497 . . . 4  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  C  e.  X )  ->  ( B M C )  =  ( B ( +v
`  U ) (
-u 1 S C ) ) )
20193adant3r1 1274 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( B M C )  =  ( B ( +v `  U
) ( -u 1 S C ) ) )
2120oveq2d 6666 . 2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A S ( B M C ) )  =  ( A S ( B ( +v `  U ) ( -u 1 S C ) ) ) )
22 simpl 473 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  ->  U  e.  NrmCVec )
234, 5nvscl 27481 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  ->  ( A S B )  e.  X )
24233adant3r3 1276 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A S B )  e.  X )
254, 5nvscl 27481 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  C  e.  X )  ->  ( A S C )  e.  X )
26253adant3r2 1275 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A S C )  e.  X )
274, 10, 5, 18nvmval 27497 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A S B )  e.  X  /\  ( A S C )  e.  X )  ->  (
( A S B ) M ( A S C ) )  =  ( ( A S B ) ( +v `  U ) ( -u 1 S ( A S C ) ) ) )
2822, 24, 26, 27syl3anc 1326 . 2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( ( A S B ) M ( A S C ) )  =  ( ( A S B ) ( +v `  U
) ( -u 1 S ( A S C ) ) ) )
2917, 21, 283eqtr4d 2666 1  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A S ( B M C ) )  =  ( ( A S B ) M ( A S C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937   -ucneg 10267   NrmCVeccnv 27439   +vcpv 27440   BaseSetcba 27441   .sOLDcns 27442   -vcnsb 27444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455
This theorem is referenced by:  smcnlem  27552  minvecolem2  27731
  Copyright terms: Public domain W3C validator