![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nznngen | Structured version Visualization version GIF version |
Description: All positive integers in the set of multiples of n, nℤ, are the absolute value of n or greater. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
nznngen.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
nznngen | ⊢ (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ≥‘(abs‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldvds 38514 | . . . . . . . 8 ⊢ Rel ∥ | |
2 | relimasn 5488 | . . . . . . . 8 ⊢ (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥}) | |
3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥} |
4 | 3 | ineq1i 3810 | . . . . . 6 ⊢ (( ∥ “ {𝑁}) ∩ ℕ) = ({𝑥 ∣ 𝑁 ∥ 𝑥} ∩ ℕ) |
5 | dfrab2 3903 | . . . . . 6 ⊢ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} = ({𝑥 ∣ 𝑁 ∥ 𝑥} ∩ ℕ) | |
6 | 4, 5 | eqtr4i 2647 | . . . . 5 ⊢ (( ∥ “ {𝑁}) ∩ ℕ) = {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} |
7 | 6 | eleq2i 2693 | . . . 4 ⊢ (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) ↔ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) |
8 | rabid 3116 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} ↔ (𝑥 ∈ ℕ ∧ 𝑁 ∥ 𝑥)) | |
9 | nznngen.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
10 | nnz 11399 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℤ) | |
11 | absdvdsb 15000 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁 ∥ 𝑥 ↔ (abs‘𝑁) ∥ 𝑥)) | |
12 | 9, 10, 11 | syl2an 494 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝑁 ∥ 𝑥 ↔ (abs‘𝑁) ∥ 𝑥)) |
13 | zabscl 14053 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ) | |
14 | 9, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (abs‘𝑁) ∈ ℤ) |
15 | dvdsle 15032 | . . . . . . . . 9 ⊢ (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) | |
16 | 14, 15 | sylan 488 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) |
17 | 12, 16 | sylbid 230 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝑁 ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) |
18 | 17 | impr 649 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑁 ∥ 𝑥)) → (abs‘𝑁) ≤ 𝑥) |
19 | 8, 18 | sylan2b 492 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → (abs‘𝑁) ≤ 𝑥) |
20 | 8 | simplbi 476 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} → 𝑥 ∈ ℕ) |
21 | 20 | nnzd 11481 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} → 𝑥 ∈ ℤ) |
22 | eluz 11701 | . . . . . 6 ⊢ (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥)) | |
23 | 14, 21, 22 | syl2an 494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → (𝑥 ∈ (ℤ≥‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥)) |
24 | 19, 23 | mpbird 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁))) |
25 | 7, 24 | sylan2b 492 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ)) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁))) |
26 | 25 | ex 450 | . 2 ⊢ (𝜑 → (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁)))) |
27 | 26 | ssrdv 3609 | 1 ⊢ (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ≥‘(abs‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 {crab 2916 ∩ cin 3573 ⊆ wss 3574 {csn 4177 class class class wbr 4653 “ cima 5117 Rel wrel 5119 ‘cfv 5888 ≤ cle 10075 ℕcn 11020 ℤcz 11377 ℤ≥cuz 11687 abscabs 13974 ∥ cdvds 14983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |