MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsle Structured version   Visualization version   GIF version

Theorem dvdsle 15032
Description: The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsle ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))

Proof of Theorem dvdsle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . . . . . . . . . . . 13 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑁 < 𝑀𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1)))
2 oveq2 6658 . . . . . . . . . . . . . 14 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · 𝑀) = (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)))
32neeq1d 2853 . . . . . . . . . . . . 13 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → ((𝑛 · 𝑀) ≠ 𝑁 ↔ (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁))
41, 3imbi12d 334 . . . . . . . . . . . 12 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 1) → ((𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁) ↔ (𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁)))
5 breq1 4656 . . . . . . . . . . . . 13 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) ↔ if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1)))
6 neeq2 2857 . . . . . . . . . . . . 13 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁 ↔ (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)))
75, 6imbi12d 334 . . . . . . . . . . . 12 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑁 < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ 𝑁) ↔ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))))
8 oveq1 6657 . . . . . . . . . . . . . 14 (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) = (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)))
98neeq1d 2853 . . . . . . . . . . . . 13 (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → ((𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1) ↔ (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)))
109imbi2d 330 . . . . . . . . . . . 12 (𝑛 = if(𝑛 ∈ ℤ, 𝑛, 1) → ((if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (𝑛 · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1)) ↔ (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))))
11 1z 11407 . . . . . . . . . . . . . 14 1 ∈ ℤ
1211elimel 4150 . . . . . . . . . . . . 13 if(𝑀 ∈ ℤ, 𝑀, 1) ∈ ℤ
13 1nn 11031 . . . . . . . . . . . . . 14 1 ∈ ℕ
1413elimel 4150 . . . . . . . . . . . . 13 if(𝑁 ∈ ℕ, 𝑁, 1) ∈ ℕ
1511elimel 4150 . . . . . . . . . . . . 13 if(𝑛 ∈ ℤ, 𝑛, 1) ∈ ℤ
1612, 14, 15dvdslelem 15031 . . . . . . . . . . . 12 (if(𝑁 ∈ ℕ, 𝑁, 1) < if(𝑀 ∈ ℤ, 𝑀, 1) → (if(𝑛 ∈ ℤ, 𝑛, 1) · if(𝑀 ∈ ℤ, 𝑀, 1)) ≠ if(𝑁 ∈ ℕ, 𝑁, 1))
174, 7, 10, 16dedth3h 4141 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁))
18173expia 1267 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑛 ∈ ℤ → (𝑁 < 𝑀 → (𝑛 · 𝑀) ≠ 𝑁)))
1918com23 86 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 < 𝑀 → (𝑛 ∈ ℤ → (𝑛 · 𝑀) ≠ 𝑁)))
20193impia 1261 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑛 ∈ ℤ → (𝑛 · 𝑀) ≠ 𝑁))
2120imp 445 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑀) ≠ 𝑁)
2221neneqd 2799 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → ¬ (𝑛 · 𝑀) = 𝑁)
2322nrexdv 3001 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → ¬ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)
24 nnz 11399 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
25 divides 14985 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
2624, 25sylan2 491 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
27263adant3 1081 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
2823, 27mtbird 315 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀) → ¬ 𝑀𝑁)
29283expia 1267 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 < 𝑀 → ¬ 𝑀𝑁))
3029con2d 129 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 → ¬ 𝑁 < 𝑀))
31 zre 11381 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
32 nnre 11027 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
33 lenlt 10116 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
3431, 32, 33syl2an 494 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
3530, 34sylibrd 249 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  ifcif 4086   class class class wbr 4653  (class class class)co 6650  cr 9935  1c1 9937   · cmul 9941   < clt 10074  cle 10075  cn 11020  cz 11377  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-dvds 14984
This theorem is referenced by:  dvdsleabs  15033  dvdsssfz1  15040  fzm1ndvds  15044  fzo0dvdseq  15045  n2dvds1  15104  gcd1  15249  bezoutlem4  15259  dfgcd2  15263  gcdzeq  15271  bezoutr1  15282  lcmgcdlem  15319  qredeq  15371  isprm3  15396  prmdvdsfz  15417  isprm5  15419  maxprmfct  15421  isprm6  15426  prmfac1  15431  ncoprmlnprm  15436  pcpre1  15547  pcidlem  15576  pcprod  15599  pcfac  15603  pockthg  15610  prmreclem1  15620  prmreclem3  15622  prmreclem5  15624  1arith  15631  4sqlem11  15659  prmolelcmf  15752  gexcl2  18004  sylow1lem1  18013  sylow1lem5  18017  gexex  18256  ablfac1eu  18472  ablfaclem3  18486  znidomb  19910  dvdsflsumcom  24914  chtublem  24936  vmasum  24941  logfac2  24942  bposlem6  25014  lgsdir  25057  lgsdilem2  25058  lgsne0  25060  lgsqrlem2  25072  lgsquadlem2  25106  2sqlem8  25151  2sqblem  25156  2sqmod  29648  oddpwdc  30416  nn0prpw  32318  nznngen  38515  etransclem41  40492
  Copyright terms: Public domain W3C validator