![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odf | Structured version Visualization version GIF version |
Description: Functionality of the group element order. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.) |
Ref | Expression |
---|---|
odcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
odcl.2 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
odf | ⊢ 𝑂:𝑋⟶ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 10034 | . . . . 5 ⊢ 0 ∈ V | |
2 | ltso 10118 | . . . . . 6 ⊢ < Or ℝ | |
3 | 2 | infex 8399 | . . . . 5 ⊢ inf(𝑤, ℝ, < ) ∈ V |
4 | 1, 3 | ifex 4156 | . . . 4 ⊢ if(𝑤 = ∅, 0, inf(𝑤, ℝ, < )) ∈ V |
5 | 4 | csbex 4793 | . . 3 ⊢ ⦋{𝑧 ∈ ℕ ∣ (𝑧(.g‘𝐺)𝑦) = (0g‘𝐺)} / 𝑤⦌if(𝑤 = ∅, 0, inf(𝑤, ℝ, < )) ∈ V |
6 | odcl.1 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
7 | eqid 2622 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
8 | eqid 2622 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
9 | odcl.2 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
10 | 6, 7, 8, 9 | odfval 17952 | . . 3 ⊢ 𝑂 = (𝑦 ∈ 𝑋 ↦ ⦋{𝑧 ∈ ℕ ∣ (𝑧(.g‘𝐺)𝑦) = (0g‘𝐺)} / 𝑤⦌if(𝑤 = ∅, 0, inf(𝑤, ℝ, < ))) |
11 | 5, 10 | fnmpti 6022 | . 2 ⊢ 𝑂 Fn 𝑋 |
12 | 6, 9 | odcl 17955 | . . 3 ⊢ (𝑥 ∈ 𝑋 → (𝑂‘𝑥) ∈ ℕ0) |
13 | 12 | rgen 2922 | . 2 ⊢ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ ℕ0 |
14 | ffnfv 6388 | . 2 ⊢ (𝑂:𝑋⟶ℕ0 ↔ (𝑂 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ ℕ0)) | |
15 | 11, 13, 14 | mpbir2an 955 | 1 ⊢ 𝑂:𝑋⟶ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 ⦋csb 3533 ∅c0 3915 ifcif 4086 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 infcinf 8347 ℝcr 9935 0cc0 9936 < clt 10074 ℕcn 11020 ℕ0cn0 11292 Basecbs 15857 0gc0g 16100 .gcmg 17540 odcod 17944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-od 17948 |
This theorem is referenced by: gexex 18256 torsubg 18257 proot1mul 37777 proot1hash 37778 proot1ex 37779 |
Copyright terms: Public domain | W3C validator |