| Step | Hyp | Ref
| Expression |
| 1 | | cnvimass 5485 |
. . . 4
⊢ (◡𝑂 “ ℕ) ⊆ dom 𝑂 |
| 2 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 3 | | torsubg.1 |
. . . . . 6
⊢ 𝑂 = (od‘𝐺) |
| 4 | 2, 3 | odf 17956 |
. . . . 5
⊢ 𝑂:(Base‘𝐺)⟶ℕ0 |
| 5 | 4 | fdmi 6052 |
. . . 4
⊢ dom 𝑂 = (Base‘𝐺) |
| 6 | 1, 5 | sseqtri 3637 |
. . 3
⊢ (◡𝑂 “ ℕ) ⊆ (Base‘𝐺) |
| 7 | 6 | a1i 11 |
. 2
⊢ (𝐺 ∈ Abel → (◡𝑂 “ ℕ) ⊆ (Base‘𝐺)) |
| 8 | | ablgrp 18198 |
. . . . 5
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 9 | | eqid 2622 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 10 | 2, 9 | grpidcl 17450 |
. . . . 5
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ (Base‘𝐺)) |
| 11 | 8, 10 | syl 17 |
. . . 4
⊢ (𝐺 ∈ Abel →
(0g‘𝐺)
∈ (Base‘𝐺)) |
| 12 | 3, 9 | od1 17976 |
. . . . . 6
⊢ (𝐺 ∈ Grp → (𝑂‘(0g‘𝐺)) = 1) |
| 13 | 8, 12 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ Abel → (𝑂‘(0g‘𝐺)) = 1) |
| 14 | | 1nn 11031 |
. . . . 5
⊢ 1 ∈
ℕ |
| 15 | 13, 14 | syl6eqel 2709 |
. . . 4
⊢ (𝐺 ∈ Abel → (𝑂‘(0g‘𝐺)) ∈
ℕ) |
| 16 | | ffn 6045 |
. . . . . 6
⊢ (𝑂:(Base‘𝐺)⟶ℕ0 → 𝑂 Fn (Base‘𝐺)) |
| 17 | 4, 16 | ax-mp 5 |
. . . . 5
⊢ 𝑂 Fn (Base‘𝐺) |
| 18 | | elpreima 6337 |
. . . . 5
⊢ (𝑂 Fn (Base‘𝐺) →
((0g‘𝐺)
∈ (◡𝑂 “ ℕ) ↔
((0g‘𝐺)
∈ (Base‘𝐺) ∧
(𝑂‘(0g‘𝐺)) ∈
ℕ))) |
| 19 | 17, 18 | ax-mp 5 |
. . . 4
⊢
((0g‘𝐺) ∈ (◡𝑂 “ ℕ) ↔
((0g‘𝐺)
∈ (Base‘𝐺) ∧
(𝑂‘(0g‘𝐺)) ∈
ℕ)) |
| 20 | 11, 15, 19 | sylanbrc 698 |
. . 3
⊢ (𝐺 ∈ Abel →
(0g‘𝐺)
∈ (◡𝑂 “ ℕ)) |
| 21 | | ne0i 3921 |
. . 3
⊢
((0g‘𝐺) ∈ (◡𝑂 “ ℕ) → (◡𝑂 “ ℕ) ≠
∅) |
| 22 | 20, 21 | syl 17 |
. 2
⊢ (𝐺 ∈ Abel → (◡𝑂 “ ℕ) ≠
∅) |
| 23 | 8 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → 𝐺 ∈ Grp) |
| 24 | 6 | sseli 3599 |
. . . . . . . 8
⊢ (𝑥 ∈ (◡𝑂 “ ℕ) → 𝑥 ∈ (Base‘𝐺)) |
| 25 | 24 | ad2antlr 763 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → 𝑥 ∈ (Base‘𝐺)) |
| 26 | 6 | sseli 3599 |
. . . . . . . 8
⊢ (𝑦 ∈ (◡𝑂 “ ℕ) → 𝑦 ∈ (Base‘𝐺)) |
| 27 | 26 | adantl 482 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → 𝑦 ∈ (Base‘𝐺)) |
| 28 | | eqid 2622 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 29 | 2, 28 | grpcl 17430 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 30 | 23, 25, 27, 29 | syl3anc 1326 |
. . . . . 6
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 31 | | 0nnn 11052 |
. . . . . . . . 9
⊢ ¬ 0
∈ ℕ |
| 32 | 2, 3 | odcl 17955 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (Base‘𝐺) → (𝑂‘𝑥) ∈
ℕ0) |
| 33 | 25, 32 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘𝑥) ∈
ℕ0) |
| 34 | 33 | nn0zd 11480 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘𝑥) ∈ ℤ) |
| 35 | 2, 3 | odcl 17955 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (Base‘𝐺) → (𝑂‘𝑦) ∈
ℕ0) |
| 36 | 27, 35 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘𝑦) ∈
ℕ0) |
| 37 | 36 | nn0zd 11480 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘𝑦) ∈ ℤ) |
| 38 | 34, 37 | gcdcld 15230 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((𝑂‘𝑥) gcd (𝑂‘𝑦)) ∈
ℕ0) |
| 39 | 38 | nn0cnd 11353 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((𝑂‘𝑥) gcd (𝑂‘𝑦)) ∈ ℂ) |
| 40 | 39 | mul02d 10234 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (0 ·
((𝑂‘𝑥) gcd (𝑂‘𝑦))) = 0) |
| 41 | 40 | breq1d 4663 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((0 ·
((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)) ↔ 0 ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)))) |
| 42 | 34, 37 | zmulcld 11488 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((𝑂‘𝑥) · (𝑂‘𝑦)) ∈ ℤ) |
| 43 | | 0dvds 15002 |
. . . . . . . . . . . 12
⊢ (((𝑂‘𝑥) · (𝑂‘𝑦)) ∈ ℤ → (0 ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)) ↔ ((𝑂‘𝑥) · (𝑂‘𝑦)) = 0)) |
| 44 | 42, 43 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (0 ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)) ↔ ((𝑂‘𝑥) · (𝑂‘𝑦)) = 0)) |
| 45 | 41, 44 | bitrd 268 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((0 ·
((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)) ↔ ((𝑂‘𝑥) · (𝑂‘𝑦)) = 0)) |
| 46 | | elpreima 6337 |
. . . . . . . . . . . . . . 15
⊢ (𝑂 Fn (Base‘𝐺) → (𝑥 ∈ (◡𝑂 “ ℕ) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝑂‘𝑥) ∈ ℕ))) |
| 47 | 17, 46 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (◡𝑂 “ ℕ) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝑂‘𝑥) ∈ ℕ)) |
| 48 | 47 | simprbi 480 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (◡𝑂 “ ℕ) → (𝑂‘𝑥) ∈ ℕ) |
| 49 | 48 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘𝑥) ∈ ℕ) |
| 50 | | elpreima 6337 |
. . . . . . . . . . . . . . 15
⊢ (𝑂 Fn (Base‘𝐺) → (𝑦 ∈ (◡𝑂 “ ℕ) ↔ (𝑦 ∈ (Base‘𝐺) ∧ (𝑂‘𝑦) ∈ ℕ))) |
| 51 | 17, 50 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (◡𝑂 “ ℕ) ↔ (𝑦 ∈ (Base‘𝐺) ∧ (𝑂‘𝑦) ∈ ℕ)) |
| 52 | 51 | simprbi 480 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (◡𝑂 “ ℕ) → (𝑂‘𝑦) ∈ ℕ) |
| 53 | 52 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘𝑦) ∈ ℕ) |
| 54 | 49, 53 | nnmulcld 11068 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((𝑂‘𝑥) · (𝑂‘𝑦)) ∈ ℕ) |
| 55 | | eleq1 2689 |
. . . . . . . . . . 11
⊢ (((𝑂‘𝑥) · (𝑂‘𝑦)) = 0 → (((𝑂‘𝑥) · (𝑂‘𝑦)) ∈ ℕ ↔ 0 ∈
ℕ)) |
| 56 | 54, 55 | syl5ibcom 235 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (((𝑂‘𝑥) · (𝑂‘𝑦)) = 0 → 0 ∈
ℕ)) |
| 57 | 45, 56 | sylbid 230 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((0 ·
((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)) → 0 ∈ ℕ)) |
| 58 | 31, 57 | mtoi 190 |
. . . . . . . 8
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ¬ (0 ·
((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦))) |
| 59 | | simpll 790 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → 𝐺 ∈ Abel) |
| 60 | 3, 2, 28 | odadd1 18251 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑂‘(𝑥(+g‘𝐺)𝑦)) · ((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦))) |
| 61 | 59, 25, 27, 60 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g‘𝐺)𝑦)) · ((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦))) |
| 62 | | oveq1 6657 |
. . . . . . . . . 10
⊢ ((𝑂‘(𝑥(+g‘𝐺)𝑦)) = 0 → ((𝑂‘(𝑥(+g‘𝐺)𝑦)) · ((𝑂‘𝑥) gcd (𝑂‘𝑦))) = (0 · ((𝑂‘𝑥) gcd (𝑂‘𝑦)))) |
| 63 | 62 | breq1d 4663 |
. . . . . . . . 9
⊢ ((𝑂‘(𝑥(+g‘𝐺)𝑦)) = 0 → (((𝑂‘(𝑥(+g‘𝐺)𝑦)) · ((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)) ↔ (0 · ((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)))) |
| 64 | 61, 63 | syl5ibcom 235 |
. . . . . . . 8
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g‘𝐺)𝑦)) = 0 → (0 · ((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)))) |
| 65 | 58, 64 | mtod 189 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ¬ (𝑂‘(𝑥(+g‘𝐺)𝑦)) = 0) |
| 66 | 2, 3 | odcl 17955 |
. . . . . . . . . 10
⊢ ((𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺) → (𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈
ℕ0) |
| 67 | 30, 66 | syl 17 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈
ℕ0) |
| 68 | | elnn0 11294 |
. . . . . . . . 9
⊢ ((𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈ ℕ0 ↔ ((𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈ ℕ ∨ (𝑂‘(𝑥(+g‘𝐺)𝑦)) = 0)) |
| 69 | 67, 68 | sylib 208 |
. . . . . . . 8
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈ ℕ ∨ (𝑂‘(𝑥(+g‘𝐺)𝑦)) = 0)) |
| 70 | 69 | ord 392 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (¬ (𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈ ℕ → (𝑂‘(𝑥(+g‘𝐺)𝑦)) = 0)) |
| 71 | 65, 70 | mt3d 140 |
. . . . . 6
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈ ℕ) |
| 72 | | elpreima 6337 |
. . . . . . 7
⊢ (𝑂 Fn (Base‘𝐺) → ((𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ) ↔ ((𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈ ℕ))) |
| 73 | 17, 72 | ax-mp 5 |
. . . . . 6
⊢ ((𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ) ↔ ((𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈ ℕ)) |
| 74 | 30, 71, 73 | sylanbrc 698 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ)) |
| 75 | 74 | ralrimiva 2966 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) → ∀𝑦 ∈ (◡𝑂 “ ℕ)(𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ)) |
| 76 | | eqid 2622 |
. . . . . . 7
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 77 | 2, 76 | grpinvcl 17467 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) →
((invg‘𝐺)‘𝑥) ∈ (Base‘𝐺)) |
| 78 | 8, 24, 77 | syl2an 494 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) →
((invg‘𝐺)‘𝑥) ∈ (Base‘𝐺)) |
| 79 | 3, 76, 2 | odinv 17978 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑂‘((invg‘𝐺)‘𝑥)) = (𝑂‘𝑥)) |
| 80 | 8, 24, 79 | syl2an 494 |
. . . . . 6
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) → (𝑂‘((invg‘𝐺)‘𝑥)) = (𝑂‘𝑥)) |
| 81 | 48 | adantl 482 |
. . . . . 6
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) → (𝑂‘𝑥) ∈ ℕ) |
| 82 | 80, 81 | eqeltrd 2701 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) → (𝑂‘((invg‘𝐺)‘𝑥)) ∈ ℕ) |
| 83 | | elpreima 6337 |
. . . . . 6
⊢ (𝑂 Fn (Base‘𝐺) →
(((invg‘𝐺)‘𝑥) ∈ (◡𝑂 “ ℕ) ↔
(((invg‘𝐺)‘𝑥) ∈ (Base‘𝐺) ∧ (𝑂‘((invg‘𝐺)‘𝑥)) ∈ ℕ))) |
| 84 | 17, 83 | ax-mp 5 |
. . . . 5
⊢
(((invg‘𝐺)‘𝑥) ∈ (◡𝑂 “ ℕ) ↔
(((invg‘𝐺)‘𝑥) ∈ (Base‘𝐺) ∧ (𝑂‘((invg‘𝐺)‘𝑥)) ∈ ℕ)) |
| 85 | 78, 82, 84 | sylanbrc 698 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) →
((invg‘𝐺)‘𝑥) ∈ (◡𝑂 “ ℕ)) |
| 86 | 75, 85 | jca 554 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) → (∀𝑦 ∈ (◡𝑂 “ ℕ)(𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ) ∧
((invg‘𝐺)‘𝑥) ∈ (◡𝑂 “ ℕ))) |
| 87 | 86 | ralrimiva 2966 |
. 2
⊢ (𝐺 ∈ Abel →
∀𝑥 ∈ (◡𝑂 “ ℕ)(∀𝑦 ∈ (◡𝑂 “ ℕ)(𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ) ∧
((invg‘𝐺)‘𝑥) ∈ (◡𝑂 “ ℕ))) |
| 88 | 2, 28, 76 | issubg2 17609 |
. . 3
⊢ (𝐺 ∈ Grp → ((◡𝑂 “ ℕ) ∈ (SubGrp‘𝐺) ↔ ((◡𝑂 “ ℕ) ⊆ (Base‘𝐺) ∧ (◡𝑂 “ ℕ) ≠ ∅ ∧
∀𝑥 ∈ (◡𝑂 “ ℕ)(∀𝑦 ∈ (◡𝑂 “ ℕ)(𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ) ∧
((invg‘𝐺)‘𝑥) ∈ (◡𝑂 “ ℕ))))) |
| 89 | 8, 88 | syl 17 |
. 2
⊢ (𝐺 ∈ Abel → ((◡𝑂 “ ℕ) ∈ (SubGrp‘𝐺) ↔ ((◡𝑂 “ ℕ) ⊆ (Base‘𝐺) ∧ (◡𝑂 “ ℕ) ≠ ∅ ∧
∀𝑥 ∈ (◡𝑂 “ ℕ)(∀𝑦 ∈ (◡𝑂 “ ℕ)(𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ) ∧
((invg‘𝐺)‘𝑥) ∈ (◡𝑂 “ ℕ))))) |
| 90 | 7, 22, 87, 89 | mpbir3and 1245 |
1
⊢ (𝐺 ∈ Abel → (◡𝑂 “ ℕ) ∈ (SubGrp‘𝐺)) |