![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oduclatb | Structured version Visualization version GIF version |
Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduglb.d | ⊢ 𝐷 = (ODual‘𝑂) |
Ref | Expression |
---|---|
oduclatb | ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3212 | . 2 ⊢ (𝑂 ∈ CLat → 𝑂 ∈ V) | |
2 | noel 3919 | . . . . 5 ⊢ ¬ ((lub‘∅)‘∅) ∈ ∅ | |
3 | ssid 3624 | . . . . . 6 ⊢ ∅ ⊆ ∅ | |
4 | base0 15912 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
5 | eqid 2622 | . . . . . . 7 ⊢ (lub‘∅) = (lub‘∅) | |
6 | 4, 5 | clatlubcl 17112 | . . . . . 6 ⊢ ((∅ ∈ CLat ∧ ∅ ⊆ ∅) → ((lub‘∅)‘∅) ∈ ∅) |
7 | 3, 6 | mpan2 707 | . . . . 5 ⊢ (∅ ∈ CLat → ((lub‘∅)‘∅) ∈ ∅) |
8 | 2, 7 | mto 188 | . . . 4 ⊢ ¬ ∅ ∈ CLat |
9 | oduglb.d | . . . . . 6 ⊢ 𝐷 = (ODual‘𝑂) | |
10 | fvprc 6185 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
11 | 9, 10 | syl5eq 2668 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → 𝐷 = ∅) |
12 | 11 | eleq1d 2686 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (𝐷 ∈ CLat ↔ ∅ ∈ CLat)) |
13 | 8, 12 | mtbiri 317 | . . 3 ⊢ (¬ 𝑂 ∈ V → ¬ 𝐷 ∈ CLat) |
14 | 13 | con4i 113 | . 2 ⊢ (𝐷 ∈ CLat → 𝑂 ∈ V) |
15 | 9 | oduposb 17136 | . . . 4 ⊢ (𝑂 ∈ V → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
16 | ancom 466 | . . . . 5 ⊢ ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂))) | |
17 | eqid 2622 | . . . . . . . . 9 ⊢ (glb‘𝑂) = (glb‘𝑂) | |
18 | 9, 17 | odulub 17141 | . . . . . . . 8 ⊢ (𝑂 ∈ V → (glb‘𝑂) = (lub‘𝐷)) |
19 | 18 | dmeqd 5326 | . . . . . . 7 ⊢ (𝑂 ∈ V → dom (glb‘𝑂) = dom (lub‘𝐷)) |
20 | 19 | eqeq1d 2624 | . . . . . 6 ⊢ (𝑂 ∈ V → (dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (lub‘𝐷) = 𝒫 (Base‘𝑂))) |
21 | eqid 2622 | . . . . . . . . 9 ⊢ (lub‘𝑂) = (lub‘𝑂) | |
22 | 9, 21 | oduglb 17139 | . . . . . . . 8 ⊢ (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷)) |
23 | 22 | dmeqd 5326 | . . . . . . 7 ⊢ (𝑂 ∈ V → dom (lub‘𝑂) = dom (glb‘𝐷)) |
24 | 23 | eqeq1d 2624 | . . . . . 6 ⊢ (𝑂 ∈ V → (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ↔ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))) |
25 | 20, 24 | anbi12d 747 | . . . . 5 ⊢ (𝑂 ∈ V → ((dom (glb‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (lub‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
26 | 16, 25 | syl5bb 272 | . . . 4 ⊢ (𝑂 ∈ V → ((dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)) ↔ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
27 | 15, 26 | anbi12d 747 | . . 3 ⊢ (𝑂 ∈ V → ((𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂))) ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂))))) |
28 | eqid 2622 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
29 | 28, 21, 17 | isclat 17109 | . . 3 ⊢ (𝑂 ∈ CLat ↔ (𝑂 ∈ Poset ∧ (dom (lub‘𝑂) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝑂) = 𝒫 (Base‘𝑂)))) |
30 | 9, 28 | odubas 17133 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝐷) |
31 | eqid 2622 | . . . 4 ⊢ (lub‘𝐷) = (lub‘𝐷) | |
32 | eqid 2622 | . . . 4 ⊢ (glb‘𝐷) = (glb‘𝐷) | |
33 | 30, 31, 32 | isclat 17109 | . . 3 ⊢ (𝐷 ∈ CLat ↔ (𝐷 ∈ Poset ∧ (dom (lub‘𝐷) = 𝒫 (Base‘𝑂) ∧ dom (glb‘𝐷) = 𝒫 (Base‘𝑂)))) |
34 | 27, 29, 33 | 3bitr4g 303 | . 2 ⊢ (𝑂 ∈ V → (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat)) |
35 | 1, 14, 34 | pm5.21nii 368 | 1 ⊢ (𝑂 ∈ CLat ↔ 𝐷 ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 dom cdm 5114 ‘cfv 5888 Basecbs 15857 Posetcpo 16940 lubclub 16942 glbcglb 16943 CLatccla 17107 ODualcodu 17128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-dec 11494 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ple 15961 df-preset 16928 df-poset 16946 df-lub 16974 df-glb 16975 df-clat 17108 df-odu 17129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |