![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppgmnd | Structured version Visualization version GIF version |
Description: The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
Ref | Expression |
---|---|
oppgmnd | ⊢ (𝑅 ∈ Mnd → 𝑂 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgbas.1 | . . . 4 ⊢ 𝑂 = (oppg‘𝑅) | |
2 | eqid 2622 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | oppgbas 17781 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑂) |
4 | 3 | a1i 11 | . 2 ⊢ (𝑅 ∈ Mnd → (Base‘𝑅) = (Base‘𝑂)) |
5 | eqidd 2623 | . 2 ⊢ (𝑅 ∈ Mnd → (+g‘𝑂) = (+g‘𝑂)) | |
6 | eqid 2622 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
7 | eqid 2622 | . . . 4 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
8 | 6, 1, 7 | oppgplus 17779 | . . 3 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑅)𝑥) |
9 | 2, 6 | mndcl 17301 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(+g‘𝑅)𝑥) ∈ (Base‘𝑅)) |
10 | 9 | 3com23 1271 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(+g‘𝑅)𝑥) ∈ (Base‘𝑅)) |
11 | 8, 10 | syl5eqel 2705 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑂)𝑦) ∈ (Base‘𝑅)) |
12 | simpl 473 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Mnd) | |
13 | simpr3 1069 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅)) | |
14 | simpr2 1068 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) | |
15 | simpr1 1067 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) | |
16 | 2, 6 | mndass 17302 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥))) |
17 | 12, 13, 14, 15, 16 | syl13anc 1328 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥))) |
18 | 17 | eqcomd 2628 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥)) = ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥)) |
19 | 8 | oveq1i 6660 | . . . 4 ⊢ ((𝑥(+g‘𝑂)𝑦)(+g‘𝑂)𝑧) = ((𝑦(+g‘𝑅)𝑥)(+g‘𝑂)𝑧) |
20 | 6, 1, 7 | oppgplus 17779 | . . . 4 ⊢ ((𝑦(+g‘𝑅)𝑥)(+g‘𝑂)𝑧) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥)) |
21 | 19, 20 | eqtri 2644 | . . 3 ⊢ ((𝑥(+g‘𝑂)𝑦)(+g‘𝑂)𝑧) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥)) |
22 | 6, 1, 7 | oppgplus 17779 | . . . . 5 ⊢ (𝑦(+g‘𝑂)𝑧) = (𝑧(+g‘𝑅)𝑦) |
23 | 22 | oveq2i 6661 | . . . 4 ⊢ (𝑥(+g‘𝑂)(𝑦(+g‘𝑂)𝑧)) = (𝑥(+g‘𝑂)(𝑧(+g‘𝑅)𝑦)) |
24 | 6, 1, 7 | oppgplus 17779 | . . . 4 ⊢ (𝑥(+g‘𝑂)(𝑧(+g‘𝑅)𝑦)) = ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) |
25 | 23, 24 | eqtri 2644 | . . 3 ⊢ (𝑥(+g‘𝑂)(𝑦(+g‘𝑂)𝑧)) = ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) |
26 | 18, 21, 25 | 3eqtr4g 2681 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑂)𝑦)(+g‘𝑂)𝑧) = (𝑥(+g‘𝑂)(𝑦(+g‘𝑂)𝑧))) |
27 | eqid 2622 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
28 | 2, 27 | mndidcl 17308 | . 2 ⊢ (𝑅 ∈ Mnd → (0g‘𝑅) ∈ (Base‘𝑅)) |
29 | 6, 1, 7 | oppgplus 17779 | . . 3 ⊢ ((0g‘𝑅)(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)(0g‘𝑅)) |
30 | 2, 6, 27 | mndrid 17312 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)(0g‘𝑅)) = 𝑥) |
31 | 29, 30 | syl5eq 2668 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g‘𝑅)(+g‘𝑂)𝑥) = 𝑥) |
32 | 6, 1, 7 | oppgplus 17779 | . . 3 ⊢ (𝑥(+g‘𝑂)(0g‘𝑅)) = ((0g‘𝑅)(+g‘𝑅)𝑥) |
33 | 2, 6, 27 | mndlid 17311 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g‘𝑅)(+g‘𝑅)𝑥) = 𝑥) |
34 | 32, 33 | syl5eq 2668 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑂)(0g‘𝑅)) = 𝑥) |
35 | 4, 5, 11, 26, 28, 31, 34 | ismndd 17313 | 1 ⊢ (𝑅 ∈ Mnd → 𝑂 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 0gc0g 16100 Mndcmnd 17294 oppgcoppg 17775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-oppg 17776 |
This theorem is referenced by: oppgmndb 17785 oppggrp 17787 gsumwrev 17796 gsumzoppg 18344 gsumzinv 18345 oppgtmd 21901 |
Copyright terms: Public domain | W3C validator |