| Step | Hyp | Ref
| Expression |
| 1 | | gsumzoppg.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 2 | | gsumzoppg.o |
. . . . . . . . 9
⊢ 𝑂 =
(oppg‘𝐺) |
| 3 | 2 | oppgmnd 17784 |
. . . . . . . 8
⊢ (𝐺 ∈ Mnd → 𝑂 ∈ Mnd) |
| 4 | 1, 3 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑂 ∈ Mnd) |
| 5 | | gsumzoppg.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 6 | | gsumzoppg.0 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐺) |
| 7 | 2, 6 | oppgid 17786 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑂) |
| 8 | 7 | gsumz 17374 |
. . . . . . 7
⊢ ((𝑂 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝑂 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
| 9 | 4, 5, 8 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝑂 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
| 10 | 6 | gsumz 17374 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
| 11 | 1, 5, 10 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
| 12 | 9, 11 | eqtr4d 2659 |
. . . . 5
⊢ (𝜑 → (𝑂 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 ))) |
| 13 | 12 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝑂
Σg (𝑘 ∈ 𝐴 ↦ 0 )) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 ))) |
| 14 | | gsumzoppg.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 15 | | fvex 6201 |
. . . . . . . 8
⊢
(0g‘𝐺) ∈ V |
| 16 | 6, 15 | eqeltri 2697 |
. . . . . . 7
⊢ 0 ∈
V |
| 17 | 16 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈ V) |
| 18 | | ssid 3624 |
. . . . . . 7
⊢ (◡𝐹 “ (V ∖ { 0 })) ⊆ (◡𝐹 “ (V ∖ { 0 })) |
| 19 | | fex 6490 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) |
| 20 | 14, 5, 19 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ V) |
| 21 | | suppimacnv 7306 |
. . . . . . . . 9
⊢ ((𝐹 ∈ V ∧ 0 ∈ V)
→ (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) |
| 22 | 20, 16, 21 | sylancl 694 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) |
| 23 | 22 | sseq1d 3632 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 supp 0 ) ⊆ (◡𝐹 “ (V ∖ { 0 })) ↔ (◡𝐹 “ (V ∖ { 0 })) ⊆ (◡𝐹 “ (V ∖ { 0 })))) |
| 24 | 18, 23 | mpbiri 248 |
. . . . . 6
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (◡𝐹 “ (V ∖ { 0 }))) |
| 25 | 14, 5, 17, 24 | gsumcllem 18309 |
. . . . 5
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
𝐹 = (𝑘 ∈ 𝐴 ↦ 0 )) |
| 26 | 25 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝑂
Σg 𝐹) = (𝑂 Σg (𝑘 ∈ 𝐴 ↦ 0 ))) |
| 27 | 25 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝐺
Σg 𝐹) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 ))) |
| 28 | 13, 26, 27 | 3eqtr4d 2666 |
. . 3
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝑂
Σg 𝐹) = (𝐺 Σg 𝐹)) |
| 29 | 28 | ex 450 |
. 2
⊢ (𝜑 → ((◡𝐹 “ (V ∖ { 0 })) = ∅ →
(𝑂
Σg 𝐹) = (𝐺 Σg 𝐹))) |
| 30 | | simprl 794 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) →
(#‘(◡𝐹 “ (V ∖ { 0 }))) ∈
ℕ) |
| 31 | | nnuz 11723 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 32 | 30, 31 | syl6eleq 2711 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) →
(#‘(◡𝐹 “ (V ∖ { 0 }))) ∈
(ℤ≥‘1)) |
| 33 | 14 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴⟶𝐵) |
| 34 | | ffn 6045 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| 35 | | dffn4 6121 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
| 36 | 34, 35 | sylib 208 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→ran 𝐹) |
| 37 | | fof 6115 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴–onto→ran 𝐹 → 𝐹:𝐴⟶ran 𝐹) |
| 38 | 33, 36, 37 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴⟶ran 𝐹) |
| 39 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝐺 ∈ Mnd) |
| 40 | | gsumzoppg.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝐺) |
| 41 | 40 | submacs 17365 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ Mnd →
(SubMnd‘𝐺) ∈
(ACS‘𝐵)) |
| 42 | | acsmre 16313 |
. . . . . . . . . . . 12
⊢
((SubMnd‘𝐺)
∈ (ACS‘𝐵) →
(SubMnd‘𝐺) ∈
(Moore‘𝐵)) |
| 43 | 39, 41, 42 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) →
(SubMnd‘𝐺) ∈
(Moore‘𝐵)) |
| 44 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺)) |
| 45 | | frn 6053 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
| 46 | 33, 45 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ 𝐵) |
| 47 | 43, 44, 46 | mrcssidd 16285 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
| 48 | 38, 47 | fssd 6057 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
| 49 | | f1of1 6136 |
. . . . . . . . . . . 12
⊢ (𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1→(◡𝐹 “ (V ∖ { 0
}))) |
| 50 | 49 | ad2antll 765 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1→(◡𝐹 “ (V ∖ { 0
}))) |
| 51 | | cnvimass 5485 |
. . . . . . . . . . . 12
⊢ (◡𝐹 “ (V ∖ { 0 })) ⊆ dom 𝐹 |
| 52 | | fdm 6051 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| 53 | 33, 52 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → dom 𝐹 = 𝐴) |
| 54 | 51, 53 | syl5sseq 3653 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (◡𝐹 “ (V ∖ { 0 })) ⊆ 𝐴) |
| 55 | | f1ss 6106 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1→(◡𝐹 “ (V ∖ { 0 })) ∧
(◡𝐹 “ (V ∖ { 0 })) ⊆ 𝐴) → 𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1→𝐴) |
| 56 | 50, 54, 55 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1→𝐴) |
| 57 | | f1f 6101 |
. . . . . . . . . 10
⊢ (𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1→𝐴 → 𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))⟶𝐴) |
| 58 | 56, 57 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))⟶𝐴) |
| 59 | | fco 6058 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))⟶𝐴) → (𝐹 ∘ 𝑓):(1...(#‘(◡𝐹 “ (V ∖ { 0
}))))⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
| 60 | 48, 58, 59 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐹 ∘ 𝑓):(1...(#‘(◡𝐹 “ (V ∖ { 0
}))))⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
| 61 | 60 | ffvelrnda 6359 |
. . . . . . 7
⊢ (((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (1...(#‘(◡𝐹 “ (V ∖ { 0 }))))) → ((𝐹 ∘ 𝑓)‘𝑥) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
| 62 | 44 | mrccl 16271 |
. . . . . . . . . 10
⊢
(((SubMnd‘𝐺)
∈ (Moore‘𝐵)
∧ ran 𝐹 ⊆ 𝐵) →
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺)) |
| 63 | 43, 46, 62 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) →
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺)) |
| 64 | 2 | oppgsubm 17792 |
. . . . . . . . 9
⊢
(SubMnd‘𝐺) =
(SubMnd‘𝑂) |
| 65 | 63, 64 | syl6eleq 2711 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) →
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝑂)) |
| 66 | | eqid 2622 |
. . . . . . . . . 10
⊢
(+g‘𝑂) = (+g‘𝑂) |
| 67 | 66 | submcl 17353 |
. . . . . . . . 9
⊢
((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝑂) ∧ 𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g‘𝑂)𝑦) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
| 68 | 67 | 3expb 1266 |
. . . . . . . 8
⊢
((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝑂) ∧ (𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) → (𝑥(+g‘𝑂)𝑦) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
| 69 | 65, 68 | sylan 488 |
. . . . . . 7
⊢ (((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ (𝑥 ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) → (𝑥(+g‘𝑂)𝑦) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
| 70 | | gsumzoppg.c |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| 71 | 70 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| 72 | | gsumzoppg.z |
. . . . . . . . . . . . . 14
⊢ 𝑍 = (Cntz‘𝐺) |
| 73 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) = (𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
| 74 | 72, 44, 73 | cntzspan 18247 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd) |
| 75 | 39, 71, 74 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd) |
| 76 | 73, 72 | submcmn2 18244 |
. . . . . . . . . . . . 13
⊢
(((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → ((𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))) |
| 77 | 63, 76 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → ((𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))) |
| 78 | 75, 77 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) →
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) |
| 79 | 78 | sselda 3603 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → 𝑥 ∈ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) |
| 80 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 81 | 80, 72 | cntzi 17762 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 82 | 79, 81 | sylan 488 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 83 | 80, 2, 66 | oppgplus 17779 |
. . . . . . . . 9
⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝐺)𝑥) |
| 84 | 82, 83 | syl6reqr 2675 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g‘𝑂)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| 85 | 84 | anasss 679 |
. . . . . . 7
⊢ (((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ (𝑥 ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) → (𝑥(+g‘𝑂)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| 86 | 32, 61, 69, 85 | seqfeq4 12850 |
. . . . . 6
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) →
(seq1((+g‘𝑂), (𝐹 ∘ 𝑓))‘(#‘(◡𝐹 “ (V ∖ { 0 })))) =
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(#‘(◡𝐹 “ (V ∖ { 0 }))))) |
| 87 | 2, 40 | oppgbas 17781 |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑂) |
| 88 | | eqid 2622 |
. . . . . . 7
⊢
(Cntz‘𝑂) =
(Cntz‘𝑂) |
| 89 | 39, 3 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝑂 ∈ Mnd) |
| 90 | 5 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝐴 ∈ 𝑉) |
| 91 | 2, 72 | oppgcntz 17794 |
. . . . . . . 8
⊢ (𝑍‘ran 𝐹) = ((Cntz‘𝑂)‘ran 𝐹) |
| 92 | 71, 91 | syl6sseq 3651 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ ((Cntz‘𝑂)‘ran 𝐹)) |
| 93 | | suppssdm 7308 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 supp 0 ) ⊆ dom 𝐹 |
| 94 | 22, 93 | syl6eqssr 3656 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (◡𝐹 “ (V ∖ { 0 })) ⊆ dom 𝐹) |
| 95 | 94 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((dom
𝐹 = 𝐴 ∧ 𝜑) → (◡𝐹 “ (V ∖ { 0 })) ⊆ dom 𝐹) |
| 96 | | eqcom 2629 |
. . . . . . . . . . . . . . 15
⊢ (dom
𝐹 = 𝐴 ↔ 𝐴 = dom 𝐹) |
| 97 | 96 | biimpi 206 |
. . . . . . . . . . . . . 14
⊢ (dom
𝐹 = 𝐴 → 𝐴 = dom 𝐹) |
| 98 | 97 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((dom
𝐹 = 𝐴 ∧ 𝜑) → 𝐴 = dom 𝐹) |
| 99 | 95, 98 | sseqtr4d 3642 |
. . . . . . . . . . . 12
⊢ ((dom
𝐹 = 𝐴 ∧ 𝜑) → (◡𝐹 “ (V ∖ { 0 })) ⊆ 𝐴) |
| 100 | 99 | ex 450 |
. . . . . . . . . . 11
⊢ (dom
𝐹 = 𝐴 → (𝜑 → (◡𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)) |
| 101 | 52, 100 | syl 17 |
. . . . . . . . . 10
⊢ (𝐹:𝐴⟶𝐵 → (𝜑 → (◡𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)) |
| 102 | 14, 101 | mpcom 38 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝐹 “ (V ∖ { 0 })) ⊆ 𝐴) |
| 103 | 102 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (◡𝐹 “ (V ∖ { 0 })) ⊆ 𝐴) |
| 104 | 50, 103, 55 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1→𝐴) |
| 105 | 23 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → ((𝐹 supp 0 ) ⊆ (◡𝐹 “ (V ∖ { 0 })) ↔ (◡𝐹 “ (V ∖ { 0 })) ⊆ (◡𝐹 “ (V ∖ { 0 })))) |
| 106 | 18, 105 | mpbiri 248 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ (◡𝐹 “ (V ∖ { 0 }))) |
| 107 | | f1ofo 6144 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–onto→(◡𝐹 “ (V ∖ { 0 }))) |
| 108 | | forn 6118 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–onto→(◡𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (◡𝐹 “ (V ∖ { 0 }))) |
| 109 | 107, 108 | syl 17 |
. . . . . . . . . 10
⊢ (𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (◡𝐹 “ (V ∖ { 0 }))) |
| 110 | 109 | sseq2d 3633 |
. . . . . . . . 9
⊢ (𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })) → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ (◡𝐹 “ (V ∖ { 0 })))) |
| 111 | 110 | ad2antll 765 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ (◡𝐹 “ (V ∖ { 0 })))) |
| 112 | 106, 111 | mpbird 247 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ ran 𝑓) |
| 113 | | eqid 2622 |
. . . . . . 7
⊢ ((𝐹 ∘ 𝑓) supp 0 ) = ((𝐹 ∘ 𝑓) supp 0 ) |
| 114 | 87, 7, 66, 88, 89, 90, 33, 92, 30, 104, 112, 113 | gsumval3 18308 |
. . . . . 6
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝑂 Σg
𝐹) =
(seq1((+g‘𝑂), (𝐹 ∘ 𝑓))‘(#‘(◡𝐹 “ (V ∖ { 0 }))))) |
| 115 | 24 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ (◡𝐹 “ (V ∖ { 0 }))) |
| 116 | 115, 111 | mpbird 247 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ ran 𝑓) |
| 117 | 40, 6, 80, 72, 39, 90, 33, 71, 30, 104, 116, 113 | gsumval3 18308 |
. . . . . 6
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐺 Σg
𝐹) =
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(#‘(◡𝐹 “ (V ∖ { 0 }))))) |
| 118 | 86, 114, 117 | 3eqtr4d 2666 |
. . . . 5
⊢ ((𝜑 ∧ ((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝑂 Σg
𝐹) = (𝐺 Σg 𝐹)) |
| 119 | 118 | expr 643 |
. . . 4
⊢ ((𝜑 ∧ (#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ)
→ (𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })) → (𝑂 Σg
𝐹) = (𝐺 Σg 𝐹))) |
| 120 | 119 | exlimdv 1861 |
. . 3
⊢ ((𝜑 ∧ (#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ)
→ (∃𝑓 𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })) → (𝑂 Σg
𝐹) = (𝐺 Σg 𝐹))) |
| 121 | 120 | expimpd 629 |
. 2
⊢ (𝜑 → (((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
∃𝑓 𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 }))) → (𝑂 Σg
𝐹) = (𝐺 Σg 𝐹))) |
| 122 | | gsumzoppg.n |
. . . . 5
⊢ (𝜑 → 𝐹 finSupp 0 ) |
| 123 | 122 | fsuppimpd 8282 |
. . . 4
⊢ (𝜑 → (𝐹 supp 0 ) ∈
Fin) |
| 124 | 22, 123 | eqeltrrd 2702 |
. . 3
⊢ (𝜑 → (◡𝐹 “ (V ∖ { 0 })) ∈
Fin) |
| 125 | | fz1f1o 14441 |
. . 3
⊢ ((◡𝐹 “ (V ∖ { 0 })) ∈ Fin →
((◡𝐹 “ (V ∖ { 0 })) = ∅ ∨
((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
∃𝑓 𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 }))))) |
| 126 | 124, 125 | syl 17 |
. 2
⊢ (𝜑 → ((◡𝐹 “ (V ∖ { 0 })) = ∅ ∨
((#‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
∃𝑓 𝑓:(1...(#‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 }))))) |
| 127 | 29, 121, 126 | mpjaod 396 |
1
⊢ (𝜑 → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹)) |