MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzoppg Structured version   Visualization version   GIF version

Theorem gsumzoppg 18344
Description: The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumzoppg.b 𝐵 = (Base‘𝐺)
gsumzoppg.0 0 = (0g𝐺)
gsumzoppg.z 𝑍 = (Cntz‘𝐺)
gsumzoppg.o 𝑂 = (oppg𝐺)
gsumzoppg.g (𝜑𝐺 ∈ Mnd)
gsumzoppg.a (𝜑𝐴𝑉)
gsumzoppg.f (𝜑𝐹:𝐴𝐵)
gsumzoppg.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzoppg.n (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzoppg (𝜑 → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹))

Proof of Theorem gsumzoppg
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzoppg.g . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
2 gsumzoppg.o . . . . . . . . 9 𝑂 = (oppg𝐺)
32oppgmnd 17784 . . . . . . . 8 (𝐺 ∈ Mnd → 𝑂 ∈ Mnd)
41, 3syl 17 . . . . . . 7 (𝜑𝑂 ∈ Mnd)
5 gsumzoppg.a . . . . . . 7 (𝜑𝐴𝑉)
6 gsumzoppg.0 . . . . . . . . 9 0 = (0g𝐺)
72, 6oppgid 17786 . . . . . . . 8 0 = (0g𝑂)
87gsumz 17374 . . . . . . 7 ((𝑂 ∈ Mnd ∧ 𝐴𝑉) → (𝑂 Σg (𝑘𝐴0 )) = 0 )
94, 5, 8syl2anc 693 . . . . . 6 (𝜑 → (𝑂 Σg (𝑘𝐴0 )) = 0 )
106gsumz 17374 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
111, 5, 10syl2anc 693 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = 0 )
129, 11eqtr4d 2659 . . . . 5 (𝜑 → (𝑂 Σg (𝑘𝐴0 )) = (𝐺 Σg (𝑘𝐴0 )))
1312adantr 481 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝑂 Σg (𝑘𝐴0 )) = (𝐺 Σg (𝑘𝐴0 )))
14 gsumzoppg.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
15 fvex 6201 . . . . . . . 8 (0g𝐺) ∈ V
166, 15eqeltri 2697 . . . . . . 7 0 ∈ V
1716a1i 11 . . . . . 6 (𝜑0 ∈ V)
18 ssid 3624 . . . . . . 7 (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 “ (V ∖ { 0 }))
19 fex 6490 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
2014, 5, 19syl2anc 693 . . . . . . . . 9 (𝜑𝐹 ∈ V)
21 suppimacnv 7306 . . . . . . . . 9 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
2220, 16, 21sylancl 694 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
2322sseq1d 3632 . . . . . . 7 (𝜑 → ((𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })) ↔ (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 “ (V ∖ { 0 }))))
2418, 23mpbiri 248 . . . . . 6 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
2514, 5, 17, 24gsumcllem 18309 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → 𝐹 = (𝑘𝐴0 ))
2625oveq2d 6666 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝑂 Σg 𝐹) = (𝑂 Σg (𝑘𝐴0 )))
2725oveq2d 6666 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑘𝐴0 )))
2813, 26, 273eqtr4d 2666 . . 3 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹))
2928ex 450 . 2 (𝜑 → ((𝐹 “ (V ∖ { 0 })) = ∅ → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹)))
30 simprl 794 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ)
31 nnuz 11723 . . . . . . . 8 ℕ = (ℤ‘1)
3230, 31syl6eleq 2711 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (#‘(𝐹 “ (V ∖ { 0 }))) ∈ (ℤ‘1))
3314adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴𝐵)
34 ffn 6045 . . . . . . . . . . . 12 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
35 dffn4 6121 . . . . . . . . . . . 12 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
3634, 35sylib 208 . . . . . . . . . . 11 (𝐹:𝐴𝐵𝐹:𝐴onto→ran 𝐹)
37 fof 6115 . . . . . . . . . . 11 (𝐹:𝐴onto→ran 𝐹𝐹:𝐴⟶ran 𝐹)
3833, 36, 373syl 18 . . . . . . . . . 10 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴⟶ran 𝐹)
391adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐺 ∈ Mnd)
40 gsumzoppg.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐺)
4140submacs 17365 . . . . . . . . . . . 12 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
42 acsmre 16313 . . . . . . . . . . . 12 ((SubMnd‘𝐺) ∈ (ACS‘𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
4339, 41, 423syl 18 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
44 eqid 2622 . . . . . . . . . . 11 (mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺))
45 frn 6053 . . . . . . . . . . . 12 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
4633, 45syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹𝐵)
4743, 44, 46mrcssidd 16285 . . . . . . . . . 10 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
4838, 47fssd 6057 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
49 f1of1 6136 . . . . . . . . . . . 12 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })))
5049ad2antll 765 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })))
51 cnvimass 5485 . . . . . . . . . . . 12 (𝐹 “ (V ∖ { 0 })) ⊆ dom 𝐹
52 fdm 6051 . . . . . . . . . . . . 13 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5333, 52syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → dom 𝐹 = 𝐴)
5451, 53syl5sseq 3653 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)
55 f1ss 6106 . . . . . . . . . . 11 ((𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })) ∧ (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
5650, 54, 55syl2anc 693 . . . . . . . . . 10 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
57 f1f 6101 . . . . . . . . . 10 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴)
5856, 57syl 17 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴)
59 fco 6058 . . . . . . . . 9 ((𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴) → (𝐹𝑓):(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
6048, 58, 59syl2anc 693 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹𝑓):(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
6160ffvelrnda 6359 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (1...(#‘(𝐹 “ (V ∖ { 0 }))))) → ((𝐹𝑓)‘𝑥) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
6244mrccl 16271 . . . . . . . . . 10 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ ran 𝐹𝐵) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
6343, 46, 62syl2anc 693 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
642oppgsubm 17792 . . . . . . . . 9 (SubMnd‘𝐺) = (SubMnd‘𝑂)
6563, 64syl6eleq 2711 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝑂))
66 eqid 2622 . . . . . . . . . 10 (+g𝑂) = (+g𝑂)
6766submcl 17353 . . . . . . . . 9 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝑂) ∧ 𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g𝑂)𝑦) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
68673expb 1266 . . . . . . . 8 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝑂) ∧ (𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) → (𝑥(+g𝑂)𝑦) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
6965, 68sylan 488 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ (𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) → (𝑥(+g𝑂)𝑦) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
70 gsumzoppg.c . . . . . . . . . . . . . 14 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
7170adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
72 gsumzoppg.z . . . . . . . . . . . . . 14 𝑍 = (Cntz‘𝐺)
73 eqid 2622 . . . . . . . . . . . . . 14 (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) = (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
7472, 44, 73cntzspan 18247 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
7539, 71, 74syl2anc 693 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
7673, 72submcmn2 18244 . . . . . . . . . . . . 13 (((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
7763, 76syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
7875, 77mpbid 222 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))
7978sselda 3603 . . . . . . . . . 10 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → 𝑥 ∈ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))
80 eqid 2622 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
8180, 72cntzi 17762 . . . . . . . . . 10 ((𝑥 ∈ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
8279, 81sylan 488 . . . . . . . . 9 ((((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
8380, 2, 66oppgplus 17779 . . . . . . . . 9 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑥)
8482, 83syl6reqr 2675 . . . . . . . 8 ((((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g𝑂)𝑦) = (𝑥(+g𝐺)𝑦))
8584anasss 679 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ (𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) → (𝑥(+g𝑂)𝑦) = (𝑥(+g𝐺)𝑦))
8632, 61, 69, 85seqfeq4 12850 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (seq1((+g𝑂), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))) = (seq1((+g𝐺), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))
872, 40oppgbas 17781 . . . . . . 7 𝐵 = (Base‘𝑂)
88 eqid 2622 . . . . . . 7 (Cntz‘𝑂) = (Cntz‘𝑂)
8939, 3syl 17 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑂 ∈ Mnd)
905adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐴𝑉)
912, 72oppgcntz 17794 . . . . . . . 8 (𝑍‘ran 𝐹) = ((Cntz‘𝑂)‘ran 𝐹)
9271, 91syl6sseq 3651 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ ((Cntz‘𝑂)‘ran 𝐹))
93 suppssdm 7308 . . . . . . . . . . . . . . 15 (𝐹 supp 0 ) ⊆ dom 𝐹
9422, 93syl6eqssr 3656 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ (V ∖ { 0 })) ⊆ dom 𝐹)
9594adantl 482 . . . . . . . . . . . . 13 ((dom 𝐹 = 𝐴𝜑) → (𝐹 “ (V ∖ { 0 })) ⊆ dom 𝐹)
96 eqcom 2629 . . . . . . . . . . . . . . 15 (dom 𝐹 = 𝐴𝐴 = dom 𝐹)
9796biimpi 206 . . . . . . . . . . . . . 14 (dom 𝐹 = 𝐴𝐴 = dom 𝐹)
9897adantr 481 . . . . . . . . . . . . 13 ((dom 𝐹 = 𝐴𝜑) → 𝐴 = dom 𝐹)
9995, 98sseqtr4d 3642 . . . . . . . . . . . 12 ((dom 𝐹 = 𝐴𝜑) → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)
10099ex 450 . . . . . . . . . . 11 (dom 𝐹 = 𝐴 → (𝜑 → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴))
10152, 100syl 17 . . . . . . . . . 10 (𝐹:𝐴𝐵 → (𝜑 → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴))
10214, 101mpcom 38 . . . . . . . . 9 (𝜑 → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)
103102adantr 481 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)
10450, 103, 55syl2anc 693 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
10523adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })) ↔ (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 “ (V ∖ { 0 }))))
10618, 105mpbiri 248 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
107 f1ofo 6144 . . . . . . . . . . 11 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–onto→(𝐹 “ (V ∖ { 0 })))
108 forn 6118 . . . . . . . . . . 11 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–onto→(𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
109107, 108syl 17 . . . . . . . . . 10 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
110109sseq2d 3633 . . . . . . . . 9 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 }))))
111110ad2antll 765 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 }))))
112106, 111mpbird 247 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
113 eqid 2622 . . . . . . 7 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
11487, 7, 66, 88, 89, 90, 33, 92, 30, 104, 112, 113gsumval3 18308 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝑂 Σg 𝐹) = (seq1((+g𝑂), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))
11524adantr 481 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
116115, 111mpbird 247 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
11740, 6, 80, 72, 39, 90, 33, 71, 30, 104, 116, 113gsumval3 18308 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))
11886, 114, 1173eqtr4d 2666 . . . . 5 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹))
119118expr 643 . . . 4 ((𝜑 ∧ (#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ) → (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹)))
120119exlimdv 1861 . . 3 ((𝜑 ∧ (#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹)))
121120expimpd 629 . 2 (𝜑 → (((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 }))) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹)))
122 gsumzoppg.n . . . . 5 (𝜑𝐹 finSupp 0 )
123122fsuppimpd 8282 . . . 4 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
12422, 123eqeltrrd 2702 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) ∈ Fin)
125 fz1f1o 14441 . . 3 ((𝐹 “ (V ∖ { 0 })) ∈ Fin → ((𝐹 “ (V ∖ { 0 })) = ∅ ∨ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))))
126124, 125syl 17 . 2 (𝜑 → ((𝐹 “ (V ∖ { 0 })) = ∅ ∨ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))))
12729, 121, 126mpjaod 396 1 (𝜑 → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  cdif 3571  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118   Fn wfn 5883  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650   supp csupp 7295  Fincfn 7955   finSupp cfsupp 8275  1c1 9937  cn 11020  cuz 11687  ...cfz 12326  seqcseq 12801  #chash 13117  Basecbs 15857  s cress 15858  +gcplusg 15941  0gc0g 16100   Σg cgsu 16101  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245  Mndcmnd 17294  SubMndcsubmnd 17334  Cntzccntz 17748  oppgcoppg 17775  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-cntz 17750  df-oppg 17776  df-cmn 18195
This theorem is referenced by:  gsumzinv  18345
  Copyright terms: Public domain W3C validator