![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcoptcl | Structured version Visualization version GIF version |
Description: A constant function is a path from 𝑌 to itself. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
pcopt.1 | ⊢ 𝑃 = ((0[,]1) × {𝑌}) |
Ref | Expression |
---|---|
pcoptcl | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcopt.1 | . . 3 ⊢ 𝑃 = ((0[,]1) × {𝑌}) | |
2 | iitopon 22682 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
3 | cnconst2 21087 | . . . 4 ⊢ ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → ((0[,]1) × {𝑌}) ∈ (II Cn 𝐽)) | |
4 | 2, 3 | mp3an1 1411 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → ((0[,]1) × {𝑌}) ∈ (II Cn 𝐽)) |
5 | 1, 4 | syl5eqel 2705 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → 𝑃 ∈ (II Cn 𝐽)) |
6 | 1 | fveq1i 6192 | . . 3 ⊢ (𝑃‘0) = (((0[,]1) × {𝑌})‘0) |
7 | simpr 477 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝑋) | |
8 | 0elunit 12290 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
9 | fvconst2g 6467 | . . . 4 ⊢ ((𝑌 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘0) = 𝑌) | |
10 | 7, 8, 9 | sylancl 694 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (((0[,]1) × {𝑌})‘0) = 𝑌) |
11 | 6, 10 | syl5eq 2668 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃‘0) = 𝑌) |
12 | 1 | fveq1i 6192 | . . 3 ⊢ (𝑃‘1) = (((0[,]1) × {𝑌})‘1) |
13 | 1elunit 12291 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
14 | fvconst2g 6467 | . . . 4 ⊢ ((𝑌 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘1) = 𝑌) | |
15 | 7, 13, 14 | sylancl 694 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (((0[,]1) × {𝑌})‘1) = 𝑌) |
16 | 12, 15 | syl5eq 2668 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃‘1) = 𝑌) |
17 | 5, 11, 16 | 3jca 1242 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 {csn 4177 × cxp 5112 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 [,]cicc 12178 TopOnctopon 20715 Cn ccn 21028 IIcii 22678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-icc 12182 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-bases 20750 df-cn 21031 df-cnp 21032 df-ii 22680 |
This theorem is referenced by: pcopt 22822 pcopt2 22823 pcorevlem 22826 pi1grplem 22849 sconnpi1 31221 cvxsconn 31225 |
Copyright terms: Public domain | W3C validator |